ElectronicJournalofProbabilityVol.3(1998)Paperno.6,pages1-34.JournalURL:~ejpecp/PaperURL:~ejpecp/EjpVol3/paper6.abs.htmlAuthors’URL’s:~pablo,~lrenatoFluctuationsofasurfacesubmittedtoarandomaverageprocessP.A.FerrariL.R.G.FontesUniversidadedeS~aoPaulopablo@ime.usp.br,lrenato@ime.usp.brIME-USP,CxPostal66281,05315-970,S~aoPaulo,BrazilAbstract:Weconsiderahypersurfaceofdimensiondimbeddedinad+1dimensionalspace.Foreachx2Zd,let t(x)2Rbetheheightofthesurfaceatsitexattimet.Atrate1thex-thheightisupdatedtoarandomconvexcombinationoftheheightsofthe‘neighbors’ofx.Thedistributionoftheconvexcombinationistranslationinvariantanddoesnotdependontheheights.Thismotion,namedtherandomaverageprocess(RAP),isoneofthelinearprocessesintroducedbyLiggett(1985).SpecialcasesofRAPareatypeofsmoothingprocess(whentheconvexcombinationisdeterministic)andthevotermodel(whentheconvexcombinationconcentratesononesitechosenatrandom).Westarttheheightslocatedonahyperplanepassingthroughtheoriginbutdi erentfromthetrivialone (x) 0.Weshowthat,whentheconvexcombinationisneitherdeterministicnorconcentratingononesite,thevarianceoftheheightattheoriginattimetisproportionaltothenumberofreturnstotheoriginofasymmetricrandomwalkofdimensiond.Undermildconditionsonthedistributionoftherandomconvexcombination,thisgivesvarianceoftheorderoft1=2indimensiond=1,logtindimensiond=2andboundedintindimensionsd 3.Wealsoshowthatforeachinitialhyperplanetheprocessasseenfromtheheightattheoriginconvergestoaninvariantmeasureonthehypersurfacesconservingtheinitialasymptoticslope.Theheightattheoriginsatis esacentrallimittheorem.Toobtaintheresultsweuseacorrespondingprobabilisticcellularautomatonforwhichsimilarresultsarederived.Thisautomatoncorrespondstotheproductof(in nitelydimensional)independentrandommatriceswhoserowsareindependent.Keywords:randomaverageprocess,randomsurfaces,productofrandommatrices,linearprocess,votermodel,smoothingprocess.AMSsubjectclassi cation:60K35,82CSubmittedtoEJPonApril10,1997.FinalversionacceptedonMay15,1998.11IntroductionWeconsiderastochasticprocess tinRZd.Toeachsitei2Zdateachtimetcorrespondsaheight t(i).Theseheightsevolveaccordingtothefollowingrule.Foreachi2Zdletu(i; )bearandomprobabilitydistributiononZd.EachheighthasanindependentPoissonclockofparameter1.Whentheclockringsforsiteiattimet,arealizationofuischosen,independentofeverything,andthentheheightatsiteimovestothepositionXj2Zdu(i;j) t(j):Inotherwords,atrateoneeachheightisreplacedbyarandomconvexcombinationofthecurrentheights.Theweightsofthisconvexcombinationarechosenindependentlyateachtime.Wecallthisprocesstherandomaverageprocess(RAP).Themotioniswellde nedundersuitableconditionsonthedistributionsofuand 0.TheformalgeneratorisgivenbyLf( )=XiZd (u)[f(ui ) f( )](1.1)where isthedistributionofthematrixuanduiisde nedastheoperator:(ui )(k)=( (k)ifk6=iPju(i;j) (j)ifk=i.(1.2)Thatis,uireplacestheheightatibyaconvexcombinationoftheheightsatZd.TheRAPisaspecialcaseofthelinearprocessesofchapterIXofLiggett(1985).ParticularexamplesoftheRAParethenoiselesssmoothingprocessandthevotermodel.Inthenoiselesssmoothingprocessthedistribution concentratesallitsmassonacon-stantmatrix;thatis,thereexistsamatrixasuchthat (u=a)=1.LiggettandSpitzer(1981),Andjel(1985)andLiggett(1985)studiedthe(noisy)smoothingprocess:ateacheventofthePoissonprocesses,the(deterministic)randomconvexcombinationismultipliedbyanindependentpositiverandomvariableWofmean1|thenoise.Theabovepapersstudiedquestionsaboutexistenceandergodicityoftheprocesswhentheheightsarerestrictedtobenonnegative.Itwouldbeinterestingtostudytheergodicityquestionsforthecaseofgeneralinitialconditions.Inthevotermodel concentratesmassonthesetofmatricesuwiththefollowingproperty:foreachithereisexactlyonejwithu(i;j)di erentfromzero|andhenceequalto1.Inotherwords,whentheclockringsforheighti,itisreplacedbytheheightjforwhichu(i;j)=1.Intheusualvotermodeltheheightsassumeonlytwovalues.SeeDurrett(1996)forarecentreviewonthevotermodel.Inthispaperwewillconcentrateontheothercases,butsomemarginalresultswillconcernthesmoothingprocessandthevotermodel.Thelattermodelwillbediscussedbrie yalsointhe nalsectionofthepaper.Formostofourresultstheinitialcon gurationisahyperplanepassingthroughtheorigin:givenavector 2Rd,foreachi2Zdweset 0(i)=i ;(1.3)2the(matrix)productofiandthetransposeof (i.e.theinnerproduct).Noticethatif 0,then t 0becausethisinitialcon gurationisinvariantfortheprocess.Weassumethatthedistributionofu(i;j)istranslationinvariant:u(i;j)andu(i+k;j+k)havethesamedistribution.Ourmainresultistoshowthatwhentheinitialcon gurationisahyperplane,thevarianceoftheheightattheoriginattimetisproportionaltotheexpectedtimespentintheoriginbyasymmetricrandomwalkperturbedattheorigin.DenotingVasthevariance,weshowthatif 0(i)=i foralli,thenV t(0)=( 2+ 2)Zt0P(Ds=0jD0=0)ds(1.4)where = Xjj u(0;j) ; 2= 24 Xjj u(0;j) 235(1.5)andDtisarandomwalk(symmetric,perturbedattheorigin)withtransitionratesq(0;k)=Xj (u(0;j)u(0;j+k))q(‘;‘+k)= u(0;k)