Someexamplesinone-dimensional\geometricscatteringonmanifoldsAlexanderKiselevDivisionofMathematics,PhysicsandAstronomyCaliforniaInstituteofTechnology,253-37Pasadena,CA91125AbstractWeconsider\geometricscatteringforaLaplace-BeltramioperatoronacompactRiemannianmanifoldinsertedbetweentwohalf-lines.Wediscussapplicabilityandcorrectnessofthismodel.Withanexample,weshowthatsuchscatteringproblemmayexhibitunusualproperties:thetransitioncoe cienthasasequenceofsharppeakswhichbecomemoreandmoredistantathighenergyandotherwiseturnstozero.IntroductionInthispaperweconsidercertainboundaryvalueproblems,namely,theone-dimensionalscatteringontwo-orthree-dimensionalcompactRiemannianmanifolds.Themotivationforstudyingtheseproblemsistwofold.The rstcomesfromthepaperofJ.Avron,P.ExnerandY.Last[2],whodicussedtheproblemofapproximatingthescatteringpropertiesof 0-potentialbycertaingraphs.By 0-potentialwemeantheboundaryconditionofthetypeu0(+a)=u0( a);u(+a) u( a)= u0(a)imposedonthefunctionsfromthedomainoftheoperatoratthegivenpointa.Werecallthatforone-dimensionalscatteringonthelineonasu cientlyrapidlydecayingpotential,itistypicalthatthetransitioncoe cient1tendstooneathighenergies.Ontheotherhand,the 0-potentialhasinthisrespectverydi erentproperties:thetransitioncoe cientt( )turnsto0as !1attherate 1=2:Thisfeatureleadstoimportantspectralconsequencesfor 0Wannier-Starkladders.Namely,theabsolutelycontinuousspectruminasystemofperiodic 0interactionswithelectric eldisvoid[4]underverygeneralassumptionsonthecouplingconstants.Thisisaveryspecialphenomenainthesensethatonecannothavesuchane ectif 0isreplacedbysomesmoothpotentialwithcompactsupport.Avron,ExnerandLastsuggestedthatcertaingeometricscatterersmaypossesstheprop-ertiessimilartothoseof 0:In[2],theyshowedthatthetransitioncoe cientforan\onion{Nsegmentsofequallengthlgluedtogetherattwopoints,towhichtwohalf-axesareattached{mayapproximatethebehaviorof 0transitioncoe cientonanarbitrarylargescaleofenergy,ifoneadjustsNandlinasuitableway.Eventually,however,asistypicalforallgraphsofthistype[6],thebehaviorofthetransitioncoe cientisperiodicinenergy.Theexamplewewillconsiderinthispapershowsthatonecan ndsomegeometricstructuresforwhichthetransitioncoe cientwillingeneraldecayatin nity,withoutbeingperiodic.Therewillbepresentasequenceofsharpresonances,however{aninterestingphenomenaonitsown.Thesecondmotivationcomesfromthefactthatinsomesituations,theboundaryvalueproblemsweconsiderhereareknowntoapproximate,inacertainsense,thecorresponding\realboundaryvalueproblems.InoursituationitwouldbeascatteringproblemforaLaplace-Beltramioperatoronthemanifoldwithtwothinhalf-in nitetubesattachedtoit.WewilldiscusstheknownresultsinmoredetailinSection1,whenweexplainthechoiceoftheboundaryconditionsatthecontactpoints.Wedonotexpect,however,astraightforwardanalogyinthecasewestudyhere,sincebytakingalineinsteadofatubeweignorethee ectsduetothetransversemodesexistinginthetube,whichisessentialforhigh-energylimit.Itisreasonable,however,toexpectthatthemodelproblemwillapproximatethereal2oneonacertainscaleofenergiesrelatedtothesizeofthechannelinarealproblem.Thepaperisorganizedasfollows:inSection1,weformallyde netheLaplaceoperatoronourdomainanddiscussnaturalrestrictionsandchoiceoftheboundaryconditions.InSection2,wecomputethetransitioncoe cientinageneralsituation.Section3isdevotedtoaspeci cexample,whenwetakeasphereasamanifold.SetupoftheproblemWewouldliketoconsiderascatteringproblemforaLaplacianonthecompactsmoothRiemannianmanifoldMinsertedbetweentwohalf-linesR+andR :Wewillassume,unlessstatedotherwise,thatMisaC1manifoldwithoutboundary.Letx1;x2bethepointsatwhichthehalf-linesjointhemanifold:x1=R \Mandx2=R+\M:Wedenoteby theunionR [R+[M: MwillstayfortheLaplace-BeltramioperatoronMandD fortheoperatorsofdoubledi erentiationonR withDirichletboundaryconditionsatx1orx2correspondingly.Tode neaLaplaceoperatoronthedomain ;weproceedinaclassicway: rstde nesomesymmetricoperatorgivenbythedi erentialexpressionofLaplacianonthesetofin nitelydi erentiablefunctionsvanishingintheneighborhoodofthespecialpointsx1;x2andthenconsideritsself-adjointextensions.Namely,onthesetoffunctionsC10(D;x1;x2)=C10(R+)[C10(R )[C10(M;x1;x2)describedabove,wede neanoperator 0;whichactsonthefunctionfasfollows: 0f(x)=8: d2dx2f(x);x2R+orR ; Mf(x);x2M:Hence, 0actsasadoubledi erentiationoperatoronhalf-axesandasaLaplace-BeltramioperatoronM:Theclosureofthisoperator 0isclearlysymmetricbutnotself-adjoint.Amongtheobviousself-adjointextensionsof 0istheoperatorD M D+;andtheoperatorswithotherthanDirichletboundaryconditionsatx1;x2;butstillwithoutinterac-tionbetweenhalf-linesandthemanifold.WeareofcourseinterestedintheLaplacianson3 notsplittingintoadirectsumwithsummandsactingondi erentgeometriccomponents.Therefore,welookforsomeboundaryconditionsatthepointsx1;x2otherthanleadingtoorthogonalsums.TherangeoftheapplicabilityofourmodelisgivenbythefollowingProposition1.1.SupposethatdimM=2or3:Thentheclosure 0isasymmetricopera-torwithde ciencyindices(4;4):IfMhashigherdimension,thede ciencyindicesare(2;2):Proof.Thefunctio