SOMEPROPERTIESOFLINEARLOGICPROVEDBYSEMANTICMETHODSArnonAvron*DepartmentofComputerScienceRaymondandBeverlySacklerFacultyofExactSciencesTelAvivUniversityTelAviv,Israele-mail:aa@math.tau.ac.ilAbstractWeconstructseveralsimplealgebraicmodelsofthemultiplicativeandmulti-plicative-additivefragmentsoflinearlogicanddemonstratethevalueofsuchmodelsbyprovingsomeunexpectedproof-theoreticalpropertiesofthesefrag-ments.I.IntroductionTheresearchdescribedbelowstartedwhenweconsideredthefollowingsimpleques-tion:IsthereasentenceAofthemultiplicativefragmentofLinearLogicsuchthat)A;Aisatheoremof(theGentzen-typeversionof)thislogic?(Themotivationforconsideringthisquestionwillbeexplainedbelow,seeIII.10(3)).Afterfailingtoproduceanexampleofsuchasentencewehavetriedtoshowbyaproof-theoreticalargumentthatitcannot*PartofthisresearchwasdonewhiletheauthorwasvisitingtheComputerScienceDepartmentofEdinburghUniversity,andwassupportedbygrantsfromtheBritishAcademyofScienceandtheUKScienceandEngineeringResearchCouncil(VisitingFellowshipnumberGR/G55471).1exist.Again,wefailed(Thishadbeendue,infact,toalackofinsight,sinceDanosandSchellinxdidprovidelatersuchanargument1).Insituationslikethisinlogiconeusuallytriestoapplysemanticalmethods.Indeedafruitfulinvestigationofalogicalsystemalmostalwaysconsistsoftwocomplementaryparts:semanticalandproof-theoretical.Ideally,thereshouldbeaperfectmatchbetweenthetwo,butevenapartialmatch(likehavingonlysoundness)isfrequentlyofgreatvalue.Inlinearlogic,however,(asfarasIknow),noseriousattempthasbeenmadeuptonowtousesemanticconsiderationsinordertosolvestrictproof-theoreticalproblems.2Thestructuresthatwereinvestigatedinthisareawereofaveryabstractcharacter(likethe\phasesemanticsof[Gi87])andwereneverappliedforsolvingconcreteproblemsthatarenotdirectlyrelatedtothem.Wehavefelt,therefore,thatthetimehascometodevelopconcretestructuresthatcanserveasmodelsforlinearlogicandbehelpfulforsolvingproblemsaboutitliketheonewedescribedabove.Thispaperhas,accordingly,twopurposes.The rstistodevelopclassesofsimple,concretemodelsoflinearlogic.3Thesecondistodemonstratetheirvaluebyusingthemtoshowseveralsomewhatunexpectedfeaturesofthemultiplicativeandthemultiplicative-additivefragmentsoflinearlogic.Amongotherthingsweshow,e.g.,thatthereisnosentenceAofthemultiplicativelanguagesuchthat)A;:::;Aisatheorem(except,ofcourse,sequentsoftheform)A),thatthereisnomultisetoftheorems[A1;:::;An](n 2)ofthemultiplicativefragmentsuchthat)A1;:::;Anisalsoatheorem,andthatasequentoftheform ) isprovableinthemultiplicative-additivefragmenti themultiset isasingleton(asamultiset).Itisourhopethattheinvestigationsbelowwill nallyleadtoaclassofconcrete1InamessagetotheLINEARmboxonFebruary7,1992.Inthatnotetheyprovedalso,usingtheirbasicargument,TheoremsIII.4,III.6andthe\onlyifpartofTheoremIII.8below.Theydidnotprovidealternativeproofsforthenewresultsinsection4(likeIV.2.3.),buttheywerenotawareofthoseresultsthen.Theirargument,asitis,appliedonlytothemultiplicativefragment.2Perhapsethecaseisputtoostronglyhere.Itdependsonwhatonemightcall\strictproof-theoreticalproblems.Apaperlike[BCST],forexample,certainlytreatsproof-theoreticalproblems-butnotofthekindImean.Theexamplesbelowillustrate,Ihope,whatIhaveinmind.3ForanexampleofwhatIhaveinmindwhenIspeakabout\concretemodelsversus\abstractmodels,thinkofthetwo-valuedmodelofclassicalpropositionallogicversustheclassofBooleanalgebras.2modelsoflinearlogicforwhichwehavebothsoundnessandcompleteness.II.PreliminariesII.1Notations.Weshallusuallyusethosewhichwereemployedin[Av88].Inpartic-ular,weshalluse!;+;^;and_for,respectively,linearimplication,\par,\withand\plus.Whilein[Av88]thiswasamatterofhabit(followingthetraditioninrelevancelogic),inthepresentcontextthesenotationsturnouttobeparticularlysuggestive.Weshall,inaddition,treatnegationasanindependentconnective,denotedby:.Weshall,however,follow[Gi87]inusingthesymbols ;1and?forthemultiplicativeconjunctionandthetwomultiplicativepropositionalconstants.ThefullpropositionallinearlogicwillbedenotedbyLL,whileitsmultiplicativeandmultiplicative-additivefragments(withoutthepropositionalconstants)willbedenotedbyLLmandLLa,respectively.LL?mandLL?adenotethecorrespondingfragmentswiththemultiplicativeconstants.II.2Gentzen-typeformulationGLL?a.Weshallusetheconventionaltwo-sidedversioninwhichwehavemultisetsonbothsidesof).Therulesare:A)A 1) 1;AA; 2) 2 1; 2) 1; 2(cut) ) ;A:A; ) A; ) ) ;:A():)(+))A; 1) 1B; 2) 2A+B; 1; 2) 1; 2 ) ;A;B ) ;A+B()+)(_))A; ) B; ) A_B; ) ) ;A ) ;A_B ) ;B ) ;A_B()_)3(?))?) ) ) ;?()?)(Therulesfor ;^and1aredualtothosefor,respectively+;_and?.Thesethreeconnectivescanbetakenasde nedones.)II.3TheAssociatedConsequenceRelation.Thelinearconsequencerelation(de-noted‘‘LLin[Av88])whichisusuallyassociatedwithlinearlogic(andcorrespondstothesequentsofGLL)isnotanordinaryconsequencerelationintheTarskiansense.Itisnotsuitable,therefore,forsemanticalinvestigationsoftheusualtype.Weshallusethereforeinsteadthe\extensionalconsequencerelation‘LLwhichwasintroducedin[Av88].Itcanbegivenanyofthefollowingcharacterizations(theequivalencebetwe