SomePropertiesOftheGaussianDistributionJianxinWuGVUCenterandCollegeofComputingGeorgiaInstituteofTechnologyApril22,2004Contents1Introduction22De nition22.1UnivariateGaussian.........................22.2MultivariateGaussian........................33NotationandParameterization44LinearOperationandSummation54.1Univariatecase............................54.2MultivariateCase...........................55GeometryandMahalanobisDistance66Conditioning77ProductofGaussians98ApplicationI:ParameterEstimation108.1MaximumLikelihoodEstimation..................108.2BayesianParameterEstimation...................119ApplicationII:KalmanFilter129.1TheModel..............................129.2TheEstimation............................12AGaussianIntegral14BCharacteristicFunctions15CSchurComplementandtheMatrixInversionLemma161DVectorandMatrixDerivatives171IntroductionTheGaussiandistributionisthemostwidelyusedprobabilitydistributioninstatisticalpatternrecognitionandmachinelearning.ThenicepropertiesoftheGaussiandistributionmightbethemainreasonforitspopularity.Inthisshortpaper1,ItrytoorganizethebasicfactsabouttheGaussiandistribution.Thereisnoadvancedtheoryinthispaper.However,inordertounderstandthesefacts,somelinearalgebraandmultivariateanalysisareneeded,whicharenotalwayscoveredsu¢cientlyinundergraduatetexts.Theattemptofthispaperistopoolthesefactstogether,andhopethatitwillbeusefulfornewresearchersenteringthisarea.2De nition2.1UnivariateGaussianTheprobabilitydensityfunctionofaunivariateGaussiandistributionhasthefollowingform:p(x)=1p2exp (x )222!,(1)inwhichistheexpectedvalueofx,and2isthevariance.Weassumethat0.Wehaveto rstverifythateq.(1)isavaliddensity.Itisobviousthatp(x)0alwaysholdsforx2R.Fromeq.(96)inAppendixAweknowthatR1 1exp x2tdx=pt.Applyingthisequation,wehaveZ1 1p(x)dx=1p2Z1 1exp (x )222!dx(2)=1p2Z1 1exp x222dx(3)=1p2p22=1,(4)whichmeansthatp(x)isavaliddensity.Thedensity1p2exp x22iscalledthestandardnormaldensity.InAppen-dixA,itisshowedthatthemeanvalueandstandarddeviationofthestandardnormaldistributionare0and1respectively.Bydoingachangeofvariables,itiseasytoshowthat=Rxp(x)dxand2=R(x )2p(x)dx.1IplannedtowriteashortnotelistingsomepropertiesofGaussian.However,somehowIdecidedtokeepthispaperself-containing.Theresultisthatitbecomesveryfat.22.2MultivariateGaussianTheprobabilitydensityfunctionofamultivariateGaussiandistributionhasthefollowingform:p(x)=1(2)d=2jj1=2exp 12(x )T 1(x ),(5)inwhichxisad-dimensionalvector,isthed-dimensionalmeanvector,andisthed-by-dcovariancematrix.Weassumethatisasymmetric,positivede nitematrix.Wehaveto rstverifythateq.(5)isavalidprobabilitydensityfunction.Itisobviousthatp(x)0alwaysholdsforx2Rd.Nextwediagonalizeas=UTUinwhichUisanorthogonalmatrixcontainingtheeigenvectorsof,=[1;:::;d]isadiagonalmatrixcontainingtheeigenvaluesofinitsdiagonalentriesandjj=jj.Letsde neanewrandomvectorasy= 1=2U(x ).(6)Ifwetreateq.(6)asachangeofvariables,thedeterminantoftheJacobianmatrixwillbe 1=2=jj 1=2.NowwearereadytocalculatetheintegralZp(x)dx=Z1(2)d=2jj1=2exp 12(x )T 1(x )dx(7)=Z1(2)d=2jj1=2jj1=2exp 12yTydy(8)=dYi=1Z1p2exp y2i2dyi(9)=dYi=11=1(10)inwhichyiistheithcomponentofy,i.e.y=(y1;:::;yd).ThisequationgivesthevalidityofthemultivariateGaussiandensity.Sinceyisarandomvector,ithasadensity,denotedaspy(y).Usingtheinversetransformmethod,wegetpy(y)=p+UT1=2yUT1=2(11)=UT1=2(2)d=2jj1=2exp 12UT1=2yT 1UT1=2y(12)=1(2)d=2exp 12yTy(13)Thedensityde nedbypy(y)=1(2)d=2exp 12yTy.(14)3iscalledasphericalGaussiandistribution.Letzbearandomvectorformedbyasubsetofthecomponentsofy.Bymarginalizationitisclearthatp(z)=1(2)jzj=2exp 12zTz,andspeci callyp(yi)=1p2exp y2i2.Usingthisfact,itisstraightforwardtoshowthatthemeanvectorandcovariancematrixofasphericalGaussianare0andIrespectively.Usingtheinversetransformofeq.(6),wecaneasilycalculatethemeanvectorandcovariancematrixofthedensityp(x).Ex=E+UT1=2y=+EUT1=2y=(15)E(x )(x )T=EUT1=2yUT1=2yT(16)=UT1=2E yyT1=2U(17)=UT1=21=2U(18)=(19)3NotationandParameterizationWhenwehaveadensityoftheformineq.(5),itisoftenwrittenasxN(;)(20)or,N(x;;)(21)InmostcaseswewillusethemeanvectorandcovariancematrixtoexpressaGaussiandensity.Thisiscalledthemomentparameterization.ThereisanotherparameterizationofaGaussiandensity,calledthecanonicalparame-terization.Inthecanonicalparameterization,aGaussiandensityisexpressedasp(x)=exp+Tx 12xTx,(22)inwhich= 12 dlog2 logjj+T 1isanormalizationconstant.Theparametersinthesetworepresentationsarerelatedby= 1(23)= 1(24)= 1(25)= 1.(26)Noticethatthereisaconfusioninournotation:hasdi¤erentmeaningsineq.(22)andeq.(6).Ineq.(22),isaparameterinthecanonicalparameterizationofaGaussiandensity,whichisnotnecessarilydiagonal.Ineq.(6),isadiag-onalmatrixformedbytheeigenvaluesof.ItisstraightforwardtoshowthatthemomentparameterizationandcanonicalparameterizationoftheGaussiandistributionareequivalent.Insomecasesthecanonicalparameterizationismoreconvenienttousethanthemomentpar