Analysis of Iterative Methods for Solving a Ginzbu

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

AnalysisofIterativeMethodsforSolvingaGinzburg-LandauEquationAl oBorzi1,HaraldGrossauer2,andOtmarScherzer21InstituteforMathematics,UniversityofGrazHeinrichstr.36,A-8010Graz,Austria2DepartmentofComputerScience,UniversityofInnsbruckTechnikerstr.25,A-6020Innsbruck,Austriafharald.grossauer,otmar.scherzerg@uibk.ac.at(volumetric)data(whichhasapplicationsinframeinterpolation),improvingsparselysampleddataandto llinfragmentarysurfaces.Inthispaperwereviewdigitalinpaintingalgorithmsandcomparetheirper-formancewithaGinzburg-Landauinpaintingmodel.ForthesolutionoftheGinzburg-Landauequationwecomparetheperformanceofseveralnumericalalgorithms.Astabilityandconvergenceanalysisisgivenandtheconsequencesforapplicationstodigitalinpaintingarediscussed.Keywords:Ginzburg-Landauequation,inpainting,di usion ltering,non-linearpartialdi erentialequations,variationalproblemsAMS:35K57,65M061IntroductionInpaintingistheprocessofrestorationofmissingimagedata;itistypicallydonebyartists.DigitalInpaintingisperformedbycomputerprogramsrequiringauseronlytomarkinpaintingdomainsinadigitizedimage.Digitalinpaintinghasseveralapplicationsinphotography[1],suchasscratchremovalorretouch-ing.Combininginpaintingalgorithmswithscratchdetectionalgorithms(see,e.g.,[2]andthereferencestherein)allowstoalmostautomaticallyrestorelargesetsofdegradedimagesorevencompletemovies.Adicultyassociatedwithdigitalinpaintingistosetupameasureofvisualsensitivitytowardsdefectswhichcanbeusedinacomputercode.AnattemptinthisdirectionistheperceptuallybasedphysicalerrormetricintroducedbyRamasubramanian,Pat-tanaik&Greenberg[3].Today,thecommonpsychologicalopinionisthatthehumanperceptualsystemismoresensitivetoedgesthantotextureandmostsensitivetojunctions;seeCaselles,Coll&Morel[4]asaparadigmofthisstate-mentinthecomputerscienceandmathematicalliterature.Asaconsequenceagoodinpaintingalgorithmaimstoconnectcorrespondingedgesandextrapolatetexturessmoothly.Inthefollowingwesurveysomerecentlyproposedinpaintingmethodsbasedonlevellinestrategies,partialdi erentialequations(PDEs)andvariationalmethods.Othertopicsrelatedtoimageinpaintingsuchastexturesynthesiswithstatisticalmethods(see,e.g.,[5,6]andreferencestherein),combinedPDE/texturesynthesismethods(see[7{9])andimageinterpolationwithsamplingmethods(see,e.g.,[10,11])arenotconsideredfurtherinthispaper.{In[12]weproposedtousetheGinzburg-Landauequationfordigitalin-paintingpurposes.OriginallythisequationwasdevelopedbyGinzburg&Landau[13]tophenomenologicallydescribephasetransitionsinsupercon-ductorsneartheircriticaltemperature.Theequationhasproventobeusefulinseveraldistinctareas:itisusedtomodelsometypesofchemicalreactions,likethefamousBelousov-Zhabotinskyreaction,tomodelboundarylayersinmulti-phasesystems,andtodescribethedevelopmentofpatternsandshocksinnon-equilibriumsystems(see[14{16]andreferencestherein).SolutionsoftherealvaluedGinzburg-Landauequationdevelopareaswithvalues1,whichareseparatedbyphasetransitionregions,i.e.,interfacesofminimalarea(cf.remarkafterequation(11)).ThispropertymakestherealvaluedGinzburg-Landauequationareasonablemethodforhighqualityinpaintingofbinaryimages,i.e.,levelsets.In[12]andinthispaperwefocusoninpaintingofgray-valuedorcolorimages.ForthispurposeweusethecomplexvaluedGinzburg-Landauequation.In[17]wehavecombinedthisalgorithmwithatexturesynthesisapproach.{AninpaintingalgorithmbasedonlevellineshasbeenproposedbyMasnou&Morel[18,19].Itconsistsofseveralstages:1.AllT-junctions{thatarepointswherelevellineshittheboundaryoftheinpaintingdomain{aretabulated.2.AtableofpairsofcompatibleT-junctionsisgenerated.TwoT-junctionsarecompatible,iftheirassociatedlevellinesbelongtothesamegraylevelintensityandhavethesameorientation.3.FromthesetofcandidatesoflevellinesconnectingcompatibleT-junctions,theonehavingthelowesttotalgeneralizedelasticaenergyXZLi;j( + jjp)ds(1)isselected.HereLi;jdenotesthelevellineconnectingtheT-junctionswiththeindicesiandj,andthesumiswithrespecttoalllevellines.Forconvexinpaintingdomainsthesearejuststraightlines.Thealgorithmiscomputationallyexpensive:atriangulationoftheinpaintingdomainhastobecalculatedandanoptimalsetoflevellinesoutofallpossibleconnectionshastobefound.Combinationwithadynamicprogrammingapproachandsortingoutinadmissibleconnectionsatanearlystagekeepsruntimecomplexityrelativelylow.Theimplementationpresentedin[18]doesnotallowinpaintingdomainswithholes(doughnutshapedinpaintingdomains).HandlingsuchinpaintingdomainsisnotadicultyforPDEbasedalgorithmsastheonesoutlinedbelowandours.{Ballesteretal.[20]haveproposedavariationalmethodforinpainting.TheyderiveasystemofcoupledPDEstoextrapolategraylevelvaluesandthegradientdirectionvector eldsmoothlyintotheinpaintingdomain.ThesystemofPDEsissolvedusinglevelsetsoftheimageintensityfunction.Thismakesthenumericalresultsdependonimplementationaldetails,inparticulartheorderinwhichthelevelsetsareprocessed(cf. gure7).{Bertalmioetal.[21]introduc

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功