ISSN1360-1725UMISTWeakapproximationofstochasticdierentialdelayequationsEvelynBuckwarTonyShardlowNumericalAnalysisReportNo.439December2003ManchesterCentreforComputationalMathematicsNumericalAnalysisReportsDEPARTMENTSOFMATHEMATICSReportsavailablefrom:DepartmentofMathematicsUniversityofManchesterManchesterM139PLEnglandAndovertheWorld-WideWebfromURLs://ftp.ma.man.ac.uk/pub/narepWeakapproximationofstochasticdierentialdelayequationsEvelynBuckwarTonyShardlowyDecember2,2003AbstractAnumericalmethodforaclassofIt^ostochasticdierentialequationswithanitedelaytermisintroduced.ThemethodisbasedontheforwardEulerapproximationandisparameterisedbyitstimestep.WeakconvergencewithrespecttoaclassofsmoothtestfunctionalsisestablishedbyusingtheinnitedimensionalversionoftheKolmogorovequation.Withregularityassumptionsoncoecientsandinitialdata,therateofconvergenceisshowntobeproportionaltothetimestep.Somecomputationsarepresentedtodemonstratetherateofconvergence.Thisisanupdatedandcorrectedversionof[6].Keywords.Theoreticalapproximationofsolutions,Stochasticpartialdierentialequations,Stochasticdelayequations,Stabilityandconvergenceofnumericalapproxi-mations.AMSsubjectclassications.60H15,34K50,65L20,34A45.1IntroductionConsiderstochasticdierentialdelayequationsonRdoftheformdY(t)=hZ0 a(ds)Y(t+s)+f(Y(t))idt+b(Y(t))dW(t);Y(0)=YS;Y(s)=YD(s)for s0,(1.1)forinitialconditionsYS2RdandYD2C([ ;0];Rd),wherea()isaddmatrixvaluedmeasureon[ ;0],f():Rd!Rd,b():Rd!Rdd,andW()isaBrownianmotiononRdwithcovarianceI.Thedelayis,whichshouldbeniteandpositive.TheequationshouldbeinterpretedinthesenseofIt^o.WenowdenetheforwardEulermethodfor(1.1).Denotetheoorfunctionbybtc,whichequalsthegreatestintegerlessthanorequaltot.Letai:=Z0 a(ds)1[it;(i+1)t)(s);i= b=tc;:::; 1;where1[t1;t2)(s)istheddidentitymatrixon[t1;t2)andiszerootherwise.LetnbeindependentandnormallydistributedwithmeanzeroandvariancetI.GenerateapproximationsYntoY(nt)forn=1;2;:::byYn+1 Yn=h 1Xi= b=tcaiYn+i+f(Yn)it+b(Yn)n;(1.2)withinitialconditionsYi=YD(it)fori= b=tc;:::; 1andY0=YS.Humboldt-UniversitatzuBerlin,InstitutfurMathematik,BereichStochastik,UnterdenLinden6,10099Berlin,buckwar@mathematik.hu-berlin.de.yDepartmentofMathematics,ManchesterUniveristy,OxfordRoad,ManchesterM139PL,shardlow@maths.man.ac.uk.ThisworkwassupportedinpartbytheNueldFoundationNUF-NAL-00.1Inaseriesofpapers,strongapproximationmethodsforstochasticdierentialdelayequationswereconsideredbyC.andM.Tudor[25,26,27,28,29].Recentlythistopichasgainedmoreattention,see[1],[2],[14],and[16].Thetheorygivesconvergenceratesofordert1=2fortheforwardEulermethod,whichisoptimal,andappliestodelayequationsmoregeneralthan(1.1).TheaimofthisworkistounderstandtheweakconvergencepropertiesoftheforwardEulermethodfor(1.1).ThetheoreticalgroundingdevelopedfortheEulermethodinthispapershouldmakeitpossibletounderstandhigherorderweakapproximationmethodsforstochasticdierentialdelayequations.Therearetwobasicapproachestoachievingthisgoal.Asdevelopedin[15,17]forSDEs,wecanlookforhigherordermethods.Thedrawbackisthedicultyinimplementinghigherordermethodsforpracticalproblems.ThesecondapproachistouseRichardsonextrapolationbasedonalowerordernumericalmethodsuchasforwardEuler.Anunderstandingofthebehaviouroftheerrorasdevelopedin[24](wheretheerrorinweakapproximationisexpandedintpowerseries)isneededtojustifythisrigorously.Weleavetheseissuesasopenproblems.Wenowdescribethehypothesisneededforourweakconvergenceanalysis.Thehypothesisaremorerestrictivethanthoseneededforstrongconvergence,butgivebetterconvergencerates.Hypothesis1.1(i)Supposethatf:Rd!Rdisfourtimescontinuouslydierentiablewithf0,f00,f000,f0000bounded.Supposethatb:Rd!Rddisboundedwithfourboundedderivatives.(ii)Supposethata(ds)hasaC1densitya:[ ;0]!R.Foranintegerp4,introducethespacesGpoftestfunctions:Rd!Rthatarefourtimescontinuouslydierentiableandsatisfyk(n)(h)kL(Rdn;R)K(1+khkp nRd),forh2RdandsomeconstantK,forn=0;1;2;3;4(kkL(Rm;R)isthestandardnorminducedonlinearoperatorsfromRmtoRbytheEuclideannorm).Inonedimension,thisspaceissucientlygeneraltoincludepolynomials.Forx=(YS;YD)T,writekxk:=(kYSk2Rd+kYDk2L2([ ;0];Rd))1=2.ForacontinuousfunctionYD:[ ;0]!Rd,letkYDkLip:=sup t;t00kYD(t) YD(t0)kRdjt t0j:Theorem1.2LetHypothesis1.1hold.ConsiderYS2RdandaLipschitzfunctionYD:[ ;0]!Rd.LetY(t)(respectively,Yn)denotethesolutionof(1.1)(resp.,(1.2))correspondingtoinitialdatax=(YS;YD)T.ForT0and2Gp,p4,thereexistsaconstantKx0suchthatE(Y(T)) E(YN)Kxt;Nt=TandaconstantKindependentoftheinitialdatasuchthatKxK(1+kxkp)+K(1+kxkp 1)kYDkLip:(1.3)Thisisthemainresultofthepresentpaper.Thetheoremmakesanumberofassumptionsontheregularityoftheproblem.ComparedtotheresultsavailableforSDEs,thehypothesisonf,b,andcomeasnosurpriseasfourderivativesarerequiredtoderivetheanalogousresultforSDEs.TheassumptionscanberelaxedforSDEsunderanon-degeneracyassumptiononthenoisebyuseoftheMalliavincalculus[4],butsuchtechniquesarenotusedinthispaper.Theassumptiononthedelaytermismorerestrictivean