Weak approximation of stochastic differential dela

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ISSN1360-1725UMISTWeakapproximationofstochasticdi erentialdelayequationsEvelynBuckwarTonyShardlowNumericalAnalysisReportNo.439December2003ManchesterCentreforComputationalMathematicsNumericalAnalysisReportsDEPARTMENTSOFMATHEMATICSReportsavailablefrom:DepartmentofMathematicsUniversityofManchesterManchesterM139PLEnglandAndovertheWorld-WideWebfromURLs://ftp.ma.man.ac.uk/pub/narepWeakapproximationofstochasticdi erentialdelayequationsEvelynBuckwarTonyShardlowyDecember2,2003AbstractAnumericalmethodforaclassofIt^ostochasticdi erentialequationswitha nitedelaytermisintroduced.ThemethodisbasedontheforwardEulerapproximationandisparameterisedbyitstimestep.Weakconvergencewithrespecttoaclassofsmoothtestfunctionalsisestablishedbyusingthein nitedimensionalversionoftheKolmogorovequation.Withregularityassumptionsoncoecientsandinitialdata,therateofconvergenceisshowntobeproportionaltothetimestep.Somecomputationsarepresentedtodemonstratetherateofconvergence.Thisisanupdatedandcorrectedversionof[6].Keywords.Theoreticalapproximationofsolutions,Stochasticpartialdi erentialequations,Stochasticdelayequations,Stabilityandconvergenceofnumericalapproxi-mations.AMSsubjectclassi cations.60H15,34K50,65L20,34A45.1IntroductionConsiderstochasticdi erentialdelayequationsonRdoftheformdY(t)=hZ0a(ds)Y(t+s)+f(Y(t))idt+b(Y(t))dW(t);Y(0)=YS;Y(s)=YD(s)fors0,(1.1)forinitialconditionsYS2RdandYD2C([;0];Rd),wherea()isaddmatrixvaluedmeasureon[;0],f():Rd!Rd,b():Rd!Rdd,andW()isaBrownianmotiononRdwithcovarianceI.Thedelayis,whichshouldbe niteandpositive.TheequationshouldbeinterpretedinthesenseofIt^o.Wenowde netheforwardEulermethodfor(1.1).Denotetheoorfunctionbybtc,whichequalsthegreatestintegerlessthanorequaltot.Letai:=Z0a(ds)1[it;(i+1)t)(s);i=b=tc;:::;1;where1[t1;t2)(s)istheddidentitymatrixon[t1;t2)andiszerootherwise.Let nbeindependentandnormallydistributedwithmeanzeroandvariancetI.GenerateapproximationsYntoY(nt)forn=1;2;:::byYn+1Yn=h1Xi=b=tcaiYn+i+f(Yn)it+b(Yn) n;(1.2)withinitialconditionsYi=YD(it)fori=b=tc;:::;1andY0=YS.Humboldt-UniversitatzuBerlin,InstitutfurMathematik,BereichStochastik,UnterdenLinden6,10099Berlin,buckwar@mathematik.hu-berlin.de.yDepartmentofMathematics,ManchesterUniveristy,OxfordRoad,ManchesterM139PL,shardlow@maths.man.ac.uk.ThisworkwassupportedinpartbytheNueldFoundationNUF-NAL-00.1Inaseriesofpapers,strongapproximationmethodsforstochasticdi erentialdelayequationswereconsideredbyC.andM.Tudor[25,26,27,28,29].Recentlythistopichasgainedmoreattention,see[1],[2],[14],and[16].Thetheorygivesconvergenceratesofordert1=2fortheforwardEulermethod,whichisoptimal,andappliestodelayequationsmoregeneralthan(1.1).TheaimofthisworkistounderstandtheweakconvergencepropertiesoftheforwardEulermethodfor(1.1).ThetheoreticalgroundingdevelopedfortheEulermethodinthispapershouldmakeitpossibletounderstandhigherorderweakapproximationmethodsforstochasticdi erentialdelayequations.Therearetwobasicapproachestoachievingthisgoal.Asdevelopedin[15,17]forSDEs,wecanlookforhigherordermethods.Thedrawbackisthedicultyinimplementinghigherordermethodsforpracticalproblems.ThesecondapproachistouseRichardsonextrapolationbasedonalowerordernumericalmethodsuchasforwardEuler.Anunderstandingofthebehaviouroftheerrorasdevelopedin[24](wheretheerrorinweakapproximationisexpandedintpowerseries)isneededtojustifythisrigorously.Weleavetheseissuesasopenproblems.Wenowdescribethehypothesisneededforourweakconvergenceanalysis.Thehypothesisaremorerestrictivethanthoseneededforstrongconvergence,butgivebetterconvergencerates.Hypothesis1.1(i)Supposethatf:Rd!Rdisfourtimescontinuouslydi erentiablewithf0,f00,f000,f0000bounded.Supposethatb:Rd!Rddisboundedwithfourboundedderivatives.(ii)Supposethata(ds)hasaC1densitya:[;0]!R.Foranintegerp4,introducethespacesGpoftestfunctions:Rd!Rthatarefourtimescontinuouslydi erentiableandsatisfyk(n)(h)kL(Rdn;R)K(1+khkpnRd),forh2RdandsomeconstantK,forn=0;1;2;3;4(kkL(Rm;R)isthestandardnorminducedonlinearoperatorsfromRmtoRbytheEuclideannorm).Inonedimension,thisspaceissucientlygeneraltoincludepolynomials.Forx=(YS;YD)T,writekxk:=(kYSk2Rd+kYDk2L2([;0];Rd))1=2.ForacontinuousfunctionYD:[;0]!Rd,letkYDkLip:=supt;t00kYD(t)YD(t0)kRdjtt0j:Theorem1.2LetHypothesis1.1hold.ConsiderYS2RdandaLipschitzfunctionYD:[;0]!Rd.LetY(t)(respectively,Yn)denotethesolutionof(1.1)(resp.,(1.2))correspondingtoinitialdatax=(YS;YD)T.ForT0and2Gp,p4,thereexistsaconstantKx0suchthat E(Y(T))E(YN) Kxt;Nt=TandaconstantKindependentoftheinitialdatasuchthatKxK(1+kxkp)+K(1+kxkp1)kYDkLip:(1.3)Thisisthemainresultofthepresentpaper.Thetheoremmakesanumberofassumptionsontheregularityoftheproblem.ComparedtotheresultsavailableforSDEs,thehypothesisonf,b,andcomeasnosurpriseasfourderivativesarerequiredtoderivetheanalogousresultforSDEs.TheassumptionscanberelaxedforSDEsunderanon-degeneracyassumptiononthenoisebyuseoftheMalliavincalculus[4],butsuchtechniquesarenotusedinthispaper.Theassumptiononthedelaytermismorerestrictivean

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功