3.1回归分析的基本思想及其初步应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020/1/253.1回归分析的基本思想及其初步应用(一)高二数学选修2-3数学3——统计内容1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题2020/1/25问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习变量之间的两种关系2020/1/251020304050500450400350300·······施化肥量x15202530354045水稻产量y330345365405445450455xy施化肥量水稻产量2020/1/25自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?2020/1/251020304050500450400350300·······发现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?施化肥量x15202530354045水稻产量y330345365405445450455xy散点图施化肥量水稻产量·······xy施化肥量水稻产量yx2020/1/25探究对于一组具有线性相关关系的数据1122(,),(,),...,(,),nnxyxyxy我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:^1122211()(),......(2)()nniiiiiinniiiixxyyxnxybxxxnxy^^,......(1)aybx1111,.nniiiixxyynn其中(,)xy称为样本点的中心。你能推导出这个公式吗?2020/1/251122(,),(,),...,(,)nnxyxyxy假设我们已经得到两个具有相关关系的变量的一组数据且回归方程是:y=bx+a,^(1,2,...,)ixin()iiiiyyybxa其中,a,b是待定参数。当变量x取时它与实际收集到的之间的偏差是iyoxy11(,)xy22(,)xy(,)iixyiiyy(,)[()()]niiiQyxyxyx易知,截距和斜率分别是使取最小值时的值。由于(,)()iiiiQyyyx^a^b,221{[()]2[()][()][()]}niiiiiyxyxyxyxyxyx2211[()]2[()]()(),nniiiiiiyxyxyxyxyxnyx11[()]()()[()]nniiiiiiyxyxyxyxyxyx注意到,11()[()]nniiiiyxyxnyx()[()]0,yxnynxnyx221(,)[()]()niiiQyxyxnyx因此,2222111()2()()()()nnniiiiiiixxxxyyyynyx2222211221111()()[()()]()()()()()nniiiinniiiinniiiiiixxyyxxyynyxxxyyxxxx2020/1/25121()()()niiiniixxyyxxyx这正是我们所要推导的公式。在上式中,后两项和无关,而前两项为非负数,因此要使Q取得最小值,当且仅当前两项的值均为0,即有,2020/1/251、所求直线方程叫做回归直线方程;相应的直线叫做回归直线。2、对两个变量进行的线性分析叫做线性回归分析。1122211()()ˆ,()ˆˆnniiiiiinniiiixxyyxnxybxxxnxaybxy1、回归直线方程2020/1/25nn(x-x)(y-y)xy-nxyiiiii=1i=1ˆb==,nn222(x-x)x-nxiii=1i=1ˆˆa=y-bx.nn11x=x,y=y.iinni=1i=1其中最小二乘法:ˆˆˆybxa(,)xy称为样本点的中心。、求回归直线方程的步骤:1111(1),nniiiixxyynn求211(2),.nniiiiixxy求(3)代入公式1122211^()(),(),......(1)nniiiiiinniiiixxyyxnxybxxxnxaybxy(4)写出直线方程为y=bx+a,即为所求的回归直线方程。^2020/1/25例1、观察两相关量得如下数据:x-1-2-3-4-553421y-9-7-5-3-115379101010221110,0,110,3010.3,1iiiiiiixyyyxx求两变量间的回归方程.解:列表:i12345678910xi-1-2-3-4-553421yi-9-7-5-3-115379xiyi91415125515121492020/1/251011022110110100111010010iiiiixybyxxx000aybxb.yx所求回归直线方程为2020/1/25例2:已知10只狗的血球体积及血球的测量值如下:x45424648423558403950y6.536.309.527.506.995.909.499.206.558.72x(血球体积,mm),y(血球数,百万)(1)画出上表的散点图;(2)求出回归直线并且画出图形;(3)回归直线必经过的一点是哪一点?、利用回归直线方程对总体进行线性相关性的检验例3、炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系。如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出刚的时间)的一列数据,如下表所示:x(0.01%)104180190177147134150191204121y(min)100200210185155135170205235125(1)y与x是否具有线性相关关系;(2)如果具有线性相关关系,求回归直线方程;(3)预测当钢水含碳量为160个0.01%时,应冶炼多少分钟?2020/1/25(1)列出下表,并计算i12345678910xi104180190177147134150191204121yi100200210185155135170205235125xiyi1040036000399003274522785180902550039155479401512510101022111159.8,172,265448,312350,287640iiiiiiixyyyxx1011010222211100.9906.(10)(10)iiiiiiixyxyrxxyy于是,2020/1/2510^110221101.26710iiiiixybyxxx^30.51.aybx所以回归直线的方程为=1.267x-30.51ˆy(3)当x=160时,1.267.160-30.51=172ˆy(2)设所求的回归方程为ˆˆˆybxa例题4从某大学中随机选出8名女大学生,其身高和体重数据如下表:编号12345678身高165165157170175165155170体重4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。2020/1/25172.85849.0ˆxy分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量.ˆ学身高172cm女大生体重y=0.849×172-85.712=60.316(kg)2.回归方程:1.散点图;2020/1/25n(x-x)(y-y)iii=1r=nn22(x-x)(y-y)iii=1i=1相关系数r>0正相关;r<0负相关.通常,r0.75,认为两个变量有很强的相关性.本例中,由上面公式r=0.7980.75.2020/1/25探究?身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,其原因是什么?2020/1/25如何描述两个变量之间线性相关关系的强弱?在《数学3》中,我们学习了用相关系数r来衡量两个变量之间线性相关关系的方法。相关系数r12211()().()()niiinniiiixxyyxxyy[0.751],[1,0.75],[025,0.25],rrr当,表明两个变量正相关很强;当表明两个变量负相关很强;当.表明两个变量相关性较弱。2020/1/25相关关系的测度(相关系数取值及其意义)-1.0+1.00-0.5+0.5完全负相关无线性相关完全正相关负相关程度增加r正相关程度增加2020/1/253.1回归分析的基本思想及其初步应用(二)高二数学选修2-32020/1/25比《数学3》中“回归”增加的内容数学3——统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题选修1-2——统计案例5.引入线性回归模型y=bx+a+e6.了解模型中随机误差项e产生的原因7.了解相关指数R2和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果回归分析的内容与步骤:统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。回归分析通过一个变量或一些变量的变化解释另一变量的变化。其主要内容和步骤是:首先根据理论和对问题的分析判断,将变量分为自变量和因变量;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;2020/1/25例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。ˆxy分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量.ˆ学身高172cm女大生体

1 / 65
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功