Almost Optimal Convergence of the Point Vortex Met

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

MATHEMATICSOFCOMPUTATIONVolume68,Number228,Pages1465{1496S0025-5718(99)01108-4ArticleelectronicallypublishedonMay21,1999ALMOSTOPTIMALCONVERGENCEOFTHEPOINTVORTEXMETHODFORVORTEXSHEETSUSINGNUMERICALFILTERINGRUSSELE.CAFLISCH,THOMASY.HOU,ANDJOHNLOWENGRUBAbstract.StandardnumericalmethodsfortheBirkho -Rottequationforavortexsheetareunstableduetotheampli cationofroundo errorbytheKelvin-Helmholtzinstability.Anonlinear lteringmethodwasusedbyKrasnytoeliminatethisspuriousgrowthofround-o errorandaccuratelycomputetheBirkho -Rottsolutionessentiallyuptothetimeitbecomessingular.InthispaperconvergenceisprovedforthediscretizedBirkho -RottequationwithKrasny lteringandsimulatedroundo error.Theconvergenceisprovedforatimealmostuptothesingularitytimeofthecontinuoussolution.TheproofisinananalyticfunctionclassandusesadiscreteformoftheabstractCauchy-Kowalewskitheorem.Inorderfortheprooftoworkalmostuptothesingularitytime,thelinearandnonlinearpartsoftheequation,aswellasthee ectsofKrasny ltering,arepreciselyestimated.Thetechniqueofproofappliesdirectlytootherill-posedproblemssuchasRayleigh-Taylorun-stableinterfacesinincompressible,inviscid,andirrotationalfluids,aswellastoSa man-TaylorunstableinterfacesinHele-Shawcells.1.IntroductionStandardnumericalmethodsaregenerallynotconvergentforill-posedproblems.Typically,inanill-posedproblem,thelineargrowthratesincreaseunboundedlywithincreasingwavenumber.SuchproblemsmayhaveshorttimesmoothsolutionsiftheFouriercoecientsoftheinitialdatahaverapidenoughdecay(i.e.,existenceinanalyticfunctionspaces[5,12,23]).However,whenstandardnumericalmethodsareusedtocomputethem,themethodsprovetobehighlyunstable.Thisisbecause,onthenumericallevel,thedecayoftheFouriercoecientsislimitedbythenumericalprecision.Forexample,theFouriercoecientsoftheinitialdatadecayonlyuntiltheroundo levelisreached.Roughlyspeaking,allsubsequentmodesaredominatedbyroundo erroranddonotdecay.Sincethesehighestmodesareampli edthefastestintime,thenumericalsolutionbecomesdominatedReceivedbytheeditorDecember16,1997.1991MathematicsSubjectClassi cation.Primary65M25;Secondary76C05.Keywordsandphrases.Vortexsheets,pointvortices,numerical ltering,discreteCauchy-Kowalewskitheorem.The rstauthor'sresearchwassupportedinpartbytheArmyResearchOceundergrants#DAAL03-91-G-0162and#DAAH04-95-1-0155,thesecondauthor'sbyONRGrantN00014-96-1-0438andNSFGrantDMS-9704976,andthethirdauthor'sbytheMcKnightFoundation,theNationalScienceFoundation,theSloanFoundation,theDepartmentofEnergy,andtheUniversityofMinnesotaSupercomputerInstitute.c1999AmericanMathematicalSociety14651466RUSSELE.CAFLISCH,THOMASY.HOU,ANDJOHNLOWENGRUBbyspuriouserrorandthecomputationbreaksdown,eventhoughthetruesolutionmaystillbeverysmooth.Aprototypicalill-posedproblem,andtheonewewillconsiderinthispaper,istheevolutionofavortexsheetinanincompressible,inviscid,andotherwiseirrotationalfluid.Thisisaclassicalprobleminfluiddynamics,andthesheetundergoestheKelvin-Helmholtzinstability.Inthisproblem,thelineargrowthrateisproportionaltothewavenumberoftheinitialperturbation.Moreover,singularityformationappearstobegeneric,evenforvortexsheetsinitiallynearequilibrium[17,15,6,22,9].Onemotivationforperformingnumericalsimulationsofthevortexsheetproblemistocharacterizethetypesofsingularitiesthatcanformandtodeterminewhetherthereisinfacta\generictype.See[9]foraveryrecentandthoroughstudyofsingularityformationandevolutionforthevortexsheetproblem.Toaccuratelycomputethenumericalevolutionofavortexsheet,onemustover-comethespuriousgrowthofroundo error.Thiscanbedoneusinganumerical lter.However,standardlinear lters,suchasremoving,ordamping,a xedbandofmodes,often\over-smooththedetailsofthesolution,makingsingularitycharacterizationdicult.Moreover,throughnonlinearity,thephysicallyrelevantspectrumtypicallyexpandsintimeintotheregionofarti ciallyremovedwavenum-bers.Ifthisregionis xedindependentlyofthediscretizationparametersandoftime,thenthistypeof lteringschemewillnolongerconvergeatsuchtimes.Ontheotherhand,anonlinear ltering,introducedtothisproblembyKrasny[15],hasprovenverysuccessful.TheKrasny ltersetsequaltozeroallFouriermodeslyingbelowacertainerrortoleranceandleavesthoselyingabovethetoleranceunchanged.The lterisnonlinear,becausethemodesitremovesdependonthefunctiontowhichthe lterisapplied.Importantconsequencesofthis lterarethatitallowsnonlinearitytoproducenon-zeromodesanywhereinthespectrum,andthatthelineargrowthrateisdeterminedbythediscretizationandnotthe l-ter.Usingthisnonlinear lter,Krasny[15]andsubsequentlyShelley[22]wereabletoaccuratelycomputenumericalsolutionsessentiallyuptothetimetheybecomesingular.Inthispaperweprovethatinthepresenceofsimulatedroundo errorandKrasny ltering,thepointvortexmethod(PVM)andthespectrallyaccuratemodi- edpointvortexmethod(MPVM[22])bothconvergetothesolutionoftheBirkho -Rottequation.TheproofisinananalyticfunctionclassandusesadiscreteformoftheCauchy-Kowalewskitheorem[7,18,19,21].Theproofispresentedforthecaseinwhichthesheetisinitiallynearequilibriumandconvergenceisobtainednearlyuptothesingularitytime.Thisresultisnearlyoptimal

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功