)(01)1(nn))((01)2(xx))((0)()3(0000xxxxxx或1.三个基本无穷小第一章习题课(极限部分)一、重点内容2.关于无穷小的比较定理且在点a的某个空心邻域内)()(xfCxg如果成立,,)(,为无穷小时且当xfax其中C为常数.,)(也为无穷小xg,时则当ax1,1,11,1,0limqqqqqnn不存在3.设q为常数,则4.常用等价无穷小,0时当x,~sinxxxx~tan,~arctanxxxx~)1ln(,~1xex,21~cos12xx,~arcsinxx)1,0(ln~1aaaxax0,~1)1(xx证因na12二、典型例题例1证明数列是无穷小.)0(122ananxnnnanxn22而是无穷小,n1)(222nanna根据比较定理,数列是无穷小.}{nx.,0sin1sin)(xxxxf例2证明证因xxxfsin1sin)(x1sinx1当时,是无穷小.xxxxfsin1sin)(例3证明).(0coscos00xxxx证因2sin20xx0coscosxx2sin2sin200xxxx0022xxxx由比较定理,).(0coscos00xxxx例4求极限解由夹逼定理得02lim2.xxx,222,0xxxx时当,222,0xxxx时当).]([,2lim0的取整函数表示xxxxx,2212xxx因,2)2(lim0xx且例5设解由夹逼定理12nnnnnnnmAaaamAAm.lim),,2,1(021nnmnnnkaaamka求},{max1kmkaA设则,1limnnm而Aaaannmnnn21lim例6设解112nnnnnaaxxxaxx)2(,0221nxxaxxnnnn.lim,21,0,010nnnnnxxaxxxa求且显然,0nx.}{,2,单调减少且有界数列时当于是nxn12alll,lim.}{lxxnnn设收敛故数列有两端取极限等式,211nnnxaxx.limaxnn故),(,舍解得alal例7已知求常数a,b.,12lim31bxaxxx解1lim(1)0,xx31lim(2)0,xxxa3a3123lim1xxxbx521(1)(3)lim(1)xxxxx例8设解xxxxxnn1)1()1)(1)(1(lim2422原式xxxnnn1)1)(1(lim22xxnn11lim12x11分子、分母同乘以因子则),1(x).1()1)(1)(1(lim,1242nxxxxxn求,2)(lim,)(23xxxpxpx且是多项式解,2)(lim23xxxpx,1)(lim0xxpx又)0(,~2)(23xxbaxxxxp,1,0ab从而得.2)(23xxxxp故),,(2)(23为待定系数故可设babaxxxxp例9设).(,1)(lim0xpxxpx求解原极限2(1)()1lim1xaxbaxbx301a3ab41ba,311lim2baxxxx例10已知求常数a,b.故.61k例11当是x的几阶无穷小?0kxxxx320limk解设其为x的k阶无穷小,,0C,~2xxx,0时因x所以,当,0时x,~61332xxxx则32,0xxx时证因n1一、证明数列是无穷小.nnxn1而是无穷小,211n练习题nnxn1nn11根据比较定理,数列是无穷小.}{nx二、证明).0(012cosxx证因xsin212cosxx2sin2x2由比较定理,).0(012cosxx三、求下列极限:3121.lim3xxx12.lim(1)xxxe221sin3.lim21xxxx11234.lim23nnnnn25.limarccos()xxxx141123321lim110xxxeae四、已知极限存在,求常数a.解因,lim10xxeaeeaeaexxxxxx11011021lim21lim因,0lim10xxe.2121lim110xxxeae由于极限存在,所以左、右极限相等,故.21a所以所以五、求出曲线的水平与铅直渐近线.解11limlim2xxyxx1112xxyy是曲线的一条水平渐近线.11limlim2xxyxx11111lim2xxx11111lim2xxx112xxy,11limlim211xxyxx又因所以,的铅直渐近线.1112xxyx是曲线1112xxyy是曲线的一条水平渐近线.证;}{是单调增加的显然nx,331x因,3kx假定kkxx31,3;}{是有界的故nx,31nnxx2131,2131AA解得(舍负).lim,limAxxnnnn设存在所以的极限存在,并求其极限值.)(333重根式nxn六、证明数列.2131limnnx,3limlim1nnnnxx于是,32AA即所以