Fractal fits to Riemann zeros

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

FractalFitstoRiemannZerosPaulB.SlaterISBER,UniversityofCalifornia,SantaBarbara,CA93106(Dated:February7,2008)1arXiv:math-ph/0606005v226Mar2007AbstractWuandSprung(Phys.Rev.E,48,2595(1993))reproducedthe rst500nontrivialRiemannzeros,usingaone-dimensionallocalpotentialmodel.Theyconcluded|andsimilarlyvanZylandHutchinson(Phys.Rev.E,67,066211(2003))|thatthepotentialpossessesafractalstructureofdimensiond=32.Wemodelthenonsmoothuctuatingpartofthepotentialbythealternating-signsineseriesfractalofBerryandLewisA(x;).Settingd=32,weestimatethefrequencyparameter(),plusanoverallscalingparameter()weintroduce.Wesearchforthatpairofparameters(;)whichminimizestheleast-squares tSn(;)ofthelowestneigenvalues|obtainedbysolvingtheone-dimensionalstationary(non-fractal)Schrodingerequationwiththetrialpotential(smoothplusnonsmoothparts)|tothelowestnRiemannzerosforn=25.Fortheadditionalcaseswestudy,n=50and75,wesimplyset=1.The tsobtainedarecomparedtothosegottenbyusingjustthesmoothpartoftheWu-Sprungpotentialwithoutanyfractalsupplementation.Somelimitedimprovement|5.7261vs.6.39207(n=25),11.2672vs.11.7002(n=50)and16.3119vs.16.6809(n=75)|isfoundinour(non-optimized,computationally-bound)searchprocedures.Theimprovementsarerelativelystronginthevicinitiesof=3and(itssquare)9.Further,weextendtheWu-Sprungsemiclassicalframeworktoincludehigher-ordercorrectionsfromtheRiemann-vonMangoldtformula(beyondtheleading,dominantterm)intothesmoothpotential.PACSnumbers:ValidPACS02.10.De,03.65.Sq,05.45.Df,05.45.MtKeywords:Riemannzeros,Wu-Sprungpotential,Berry-Lewisalternating-signsineseriesfractal,Schrodingerequation,fractalpotential,anescalinglaw,deterministicWeierstrass-Mandelbrotfractalfunc-tion,quantumchaos,Riemann-vonMangoldtformula,rankitnormalitytestElectronicaddress:slater@kitp.ucsb.edu2I.INTRODUCTIONInsummarizingtheresultsoftheirpaper,\Riemannzerosandafractalpotential,WuandSprungstatedthat\wehavefoundanalyticallyaone-dimensionallocalpotentialwhichgeneratesthesmoothaverageleveldensityobeyedbytheRiemannzeros.Wehavethenshownhowany nitenumberoflowlyingRiemannzeroscanbereproducedbyintroducinguctuationsontopofthepotential.Themysteryofhowaone-dimensionalintegrablesystemcanproducea`chaotic'spectrumisresolvedbyadoptingtheconceptofafractalpotentialwhich,inthein niteNlimit,wouldleadtothesystemhavingadimensionlargerthanone[1,p.2597](cf.[2,3,4,5,6,7,8]).(\Indeed... ndinganHermitianoperatorwhoseeigenvaluesare[theRiemannzeros]maybeimpossiblewithoutintroducingchaoticsystems[2,p.3].)TheWu-SprungpotentialV|whichgeneratesthesmoothaverageleveldensityobeyedbytheRiemannzeros|satis edAbel'sintegralequation[1,eq.(6)],andwaswrittenimplicitlyas[1,eq.(7)](cf.[9][10,sec.4]),xWS(V)=1pVV0lnV02e2+pVlnpV+pVV0pVpVV0:(1)HereV0=3:100739:74123.Ourobjectiveistoreproduce,asbestwecan,theuctuationsontopofthepotentialVWS(x),implicitlygivenby(1),sothattheapplicationoftheSchrodingerequationtotheso-amended(smoothplusfractal)potentialwouldyieldtheRiemannzerosthemselves.Forourexploratorypurposes,weadopt(beingaparticularcaseofadeterministicWeierstrass-Mandelbrot[WM]fractalfunction)thealternating-signsineseriesofBerryandLewis[11,eq.(5)],A(x;)=1m=1(1)msinmx(2d)m;(1d2;1):(2)Here,disthefractaldimension,which|followingthebox-countingargumentofWuandSprung[1](cf.[12])|wetaketobe32.Wehave,inthisd=32Berry-Lewiscontext,aspeci ccase,A(x;)=12A(x;);(3)ofthe\anescalinglaw[11,eq.(3)].Wealsoscale|inthe rst(n=25)ofourthreesetsofanalyses(n=25;50;75)|A(x;)byaparameter,wherenisthenumberofthe3lowestRiemannzerosweaspireto t(sec.IIA).Forthecasesn=50(sec.IIB)and75(sec.IIC),wewillsimplyset=1.Insec.III,wedemonstratehowtoincorporatemoretermsoftheRiemann-vonMangoldtformula[13]forthecumulatednumberofRiemannzerosthanWu-Sprungthemselvesdid,usingasemiclassicalargument,inderivingxWS(V).(Itremains,however,tonumericallyimplementtheselast ndings.)II.ANALYSESA.n=25Weproceed,tobegin,tryingto tthe rsttwenty- veRiemannzerosby ndingdis-tinguishedvaluesofthetwoparameters(and).Werandomlygeneratetrialvalues110and010.(Numerically-speaking,wetruncatethesummationin(2)bysummingfromm=30tom=30(cf.[11,App.]).Wehavenotyetgaugedthesensitivityofthevariousresultsinthispapertothischoiceofcuto |nortothesettingd=32norfurthertothespeci cmeasureof t(sum-of-squaredeviations)employed|thoughitwouldcertainlybeofinteresttodosoforanyorallofthem.)Ifweusethesmoothpotentialgivenby(1)itself|withoutanyfractalsupplementation|thesum-of-squaresdeviationofthe rsttwenty- veeigenvaluesyieldedbyapplicationoftheone-dimensionalstationarySchrodingerequationfromthe rsttwenty- veRiemannzerosis6.23907(Fig.1).(Thisisonly0.0069percentofthetotal[non- tted]sumofsquaresofthezerosthemselves,thatis,92569.63,soonemightaverthatthesemiclassically-basedsmoothWu-Sprungpotentialisnotablysuccessfulinwell-approximatingtheRiemannzeros.Itis,ofcourse,ourobjectiveheretoreducethissmallpercentageevenfurther.LetusalsonotethatarefereesuggestedthatthescatterinFigs.17and9mightbereducedifthemodulusofthescatterweretobeplotted.)Werandomlygenerated4,007pairsof(;)fromtheindicated

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功