Fractional dynamic symmetries and the ground state

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

FractionaldynamicsymmetriesandthegroundstatepropertiesofnucleiRichardHerrmannGigaHedron,Farnweg71,D-63225Langen,GermanyE-mail:herrmann@gigahedron.comAbstract.BasedontheRiemann-andCaputode nitionofthefractionalderivativeweusethefractionalextensionsofthestandardrotationgroupSO(3)toconstructahigherdimensionalrepresentationofafractionalrotationgroupwithmixedderivativetypes.Anextendedsymmetricrotormodelisderived,whichpredictsthesequenceofmagicprotonandneutronnumbersaccurately.Thegroundstatepropertiesofnucleiarecorrectlyreproducedwithintheframeworkofthismodel.PACSnumbers:21.60.Fw,21.60.Cs,05.30.Pr1.IntroductionTheexperimentalevidencefordiscontinuitiesinthesequenceofatomicmasses, and -decaysystematicsandbindingenergiesofnucleisuggeststheexistenceofasetofmagicprotonandneutronnumbers,whichcanbedescribedsuccessfullybysingleparticleshellmodelswithaheuristicspin-orbitterm[1],[2].ThemostprominentrepresentativeisthephenomenologicalNilssonmodel[3]withananisotropicoscillatorpotential:V(xi)=3Xi=112m!2ix2i~!0(2~l~s+l2)(1)Althoughthesemodelsareexibleenoughtoreproducetheexperimentalresults,theylackadeepertheoreticaljusti cation,whichbecomesobvious,whenextrapolatingtheparameters,,whichdeterminethestrengthofthespinorbitandl2termtotheregionofsuperheavyelements[5].Henceitseemstemptingtodescribetheexperimentaldatawithalternativemethods.Typicalexamplesarerelativisticmean eldtheories[6],[7],wherenucleonsaredescribedbytheDirac-equationandtheinteractionismediatedbymesons.Althoughaspinorbitforceisobsoleteinthesemodels,di erentparametrizationspredictdi erentshellclosures[8],[9].ThereforetheproblemofatheoreticalfoundationofmagicnumbersremainsanopenquestionsinceElsasser[10]raisedtheproblem75yearsago.Afundamentalunderstandingofmagicnumbersforprotonsandneutronsmaybeachievediftheunderlyingcorrespondingsymmetryofthenuclearmanybodysystemisdetermined.Thereforeagrouptheoreticalapproachseemsappropriate.arXiv:0806.2300v2[physics.gen-ph]12Aug2008Fractionaldynamicsymmetriesandthegroundstatepropertiesofnuclei2Grouptheoreticalmethodshavebeensuccessfullyappliedtoproblemsinnuclearphysicsfordecades.Elliott[11]hasdemonstrated,thatanaveragenuclearpotentialgivenbyathreedimensionalharmonicoscillatorcorrespondstoaSU(3)symmetry.LowlyingcollectivestateshavebeensuccessfullydescribedwithintheIBM-model[12],whichcontainsasonelimitthe vedimensionalharmonicoscillator,whichisdirectlyrelatedtotheBohr-MottelsonHamiltonian.Inthispaperwewilldeterminethesymmetrygroup,whichgeneratesasingleparticlespectrumsimilarto(1),butincludesthemagicnumbersrightfromthebeginning.Ourapproachisbasedongrouptheoreticalmethodsdevelopedwithintheframeworkoffractionalcalculus.Thefractionalcalculus[13]-[16]providesasetofaxiomsandmethodstoextendthecoordinateandcorrespondingderivativede nitionsinareasonablewayfromintegerorderntoarbitraryorder :fxn;@n@xng!fx ;@ @x g(2)Thede nitionofthefractionalorderderivativeisnotunique,severalde nitionse.g.theFeller,Fourier,Riemann,Caputo,Weyl,Riesz,Grunwaldfractionalderivativede nitionscoexist[17]-[25].Adirectconsequenceofthisdiversityisthefact,thatthesolutionse.g.ofaonedimensionalwaveequationdi ersigni cantlydependingonthespeci cchoiceofafractionalderivativede nition.Untilnowithasalwaysbeenassumed,thatthefractionalderivativetypeforanextensionofafractionaldi erentialequationtomulti-dimensionalspaceshouldbechosenuniquely.Incontrasttothisassumption,inthispaperwewillinvestigatepropertiesofhigherdimensionalrotationgroupswithmixedCaputoandRiemanntypede nitionofthefractionalderivative.Wewilldemonstrate,thatafundamentaldynamicsymmetryisestablished,whichdeterminesthemagicnumbersforprotonsandneutronrespectivelyandfurthermoredescribesthegroundstatepropertiesofnucleiwithreasonableaccuracy.2.NotationWewillinvestigatethespectrumofmultidimensionalfractionalrotationgroupsfortwodi erentde nitionsofthefractionalderivative,namelytheRiemann-andCaputofractionalderivative.Bothtypesarestronglyrelated.Startingwiththede nitionofthefractionalRiemannintegralRI f(x)=8:(RI +f)(x)=1( )Zx0d(x) 1f()x0(RI f)(x)=1( )Z0xd(x) 1f()x0(3)where(z)denotestheEuler-function,thefractionalRiemannderivativeisde nedastheproductofafractionalintegrationfollowedbyanordinarydi erentiation:R@ x=@@xRI1 (4)Fractionaldynamicsymmetriesandthegroundstatepropertiesofnuclei3Itisexplicitelygivenby:R@ xf(x)=8:(R@ +f)(x)=1(1 )@@xZx0d(x) f()x0(R@ f)(x)=1(1 )@@xZ0xd(x) f()x0(5)TheCaputode nitionofafractionalderivativefollowsaninvertedsequenceofoperations(4).Anordinarydi erentiationisfollowedbyafractionalintegrationC@ x=RI1 @@x(6)whichresultsin:C@ xf(x)=8:(C@ +f)(x)=1(1 )Zx0d(x) @@f()x0(C@ f)(x)=1(1 )Z0xd(x) @@f()x0(7)Appliedtoafunctionsetf(x)=xn usingtheRiemannfractionalderivativede nition(5)weobtain:R@ xxn =(1+n )(1+(n1) )x(n1) (8)=R[n]x(n1) (9)wherewehaveintroducedtheabbreviationR[n].FortheCaputode nitionofthefractionalderivativeitfollowsforthesamefunctionset:C@ xxn =8:(1+n )(1+(n1) )x(n1) n00n=0(10)=C[n]x(n1) (11)wherewehaveintroducedthe

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功