GenerationandSolutionofMarkovChainsUsingMOSESGunterBolchandStefanGreinerMay1994TR-I4-11-94GenerationandSolutionofMarkovChainsUsingMOSESGunterBolchStefanGreinerHermannJungRaimundZimmerUniversityErlangen-NuernbergInstituteformathematicalmachinesanddataprocessingIVMartensstrasse1D{91058Erlangenbolch@informatik.uni-erlangen.deTechnicalReportTR-I4-11-94AbstractInthispapertheMarkovanalyzerMOSES(MOdelling,Speci cationandEvaluationSystem)andthemodeldescriptionlanguageMOSLANG{bothdevelopedattheInstituteforOperatingSystemsattheUniversityofErlangen{Nuernberg{aredescribedusingtwoexamples.Toevaluatetheperformanceofacomputersystemthesystemhastobespeci ed.InthispaperthemodeldescriptionlanguageMOSLANGisintroducedandappliedtosomeexamples.ThecoreofMOSLANGconsistsofconstructssuitableforthespeci cationofthepossiblestatesofthesystemandofRULEconstructswhichmodelthestatetransitions.Thisspeci cationmethodismuchmorecompactthanothercomparablemethodsandenablestheusertospecifylargesystemswhenhehasbecomefamiliarwithMOSLANG.TheMarkovanalyzerMOSESsupportstheinputofMOSLANGandsubsequentlycreatestheMarkoviansystemofequationsautomatically.Forsolvingthissystemofequations vedi erentmethodsareprovided.MOSEScalculatesthestateprobabilitiesandderivesfromthemtheperformancemeasureswhicharespeci edusingMOSLANG.MOSEShasbeenusedtosolvemanydi erentproblems,amongothersforanalyzingandcomparingdi erentmultiprocessorversionsoftheoperatingsystemUNIX.MOSESisimplementedintheprogramminglanguageCandrunsonallUNIXsystems.1IntroductionIntodayssystemsperformanceevaluationisveryimportantbecauseofthegrowingsystemcomplexityandshouldthereforegohandbyhandwiththedevelopementoftherealsystem.Thereforemeasurementontherealsystemisveryoftennotpossibleandoneneedsamodelofthesystem.InthispaperwewillconcentrateonqueueingmodelsbutthedescriptionlanguageMOSLANGisnotonlyrestrictedtothistypeofmodel.Queueingmodelsareverywellsuitedfortheperformanceevaluationofcomputersystemsbecausetheyareeasytounderstandanddescribethesysteminaverycompactmanner.Forthelimitedclassofproductformqueueingnetworks(PFQN’s)thereexiste cientalgorithms(e.g.MeanValueAnalysis,SCAT,Convolution)todeterminethedesiredperformancemeasuresofthesystem.Butalotsofqueueingnetworksdonotful ltherequirementsofPFQN’s.Thesenetworksarecallednonproductformqueueingnetworks(NPFQN’s)andareanalyzedbyapproximatealgorithms.Ifthesealgorithmsarenotexactenoughornotapplicabletoaparticularproblematall{thiscanbethecasewhenratesarenonexponentiallydistributedorblockingisinvolved{thenonenormallyusessimulationwithitswellknowndisadvantagesorMarkoviananalysis.Althoughthestatespaceforsimplesystemscanbeverylargeandgrowsexponentiallyinthesystemcomplexity,Markovanalysisbecomesmoreandmoreimportantbecausenewmathematicalmethodsfor1solvinglargeequationsystemsandincreasingcomputationalpowerenablesscientiststogetsteadystateandtransientperformancemeasuresinanacceptabletimecomparedtosimulation.TheproblemwiththismodelsisthatitisnearlyimpossibletoconstructtheMarkovmodelforacomplexsystembyhand.OnepossibilityforsolvingthisproblemisbymodelingthesystemviastochasticPetrinets.Theseo eramuchhighermodelingpowerthanqueueingnetworks.AveryfamoustoolfordealingwithPetrinetsisSPNP(developedatDukeUniversity)whichconvertsthespeci cationofaPetrinetintoaMarkovchainandsolvestheunderlyingequationsystem.Inthispaperanothermethodischoosentospecifyasystem.WiththehelpofanewlanguagecalledMOSLANGthestatespaceoftheMarkovchaincanbedescribedinacompactmanner.ThecoreofMOSLANGconsistsofconstructswhichallowthespeci cationofthepossiblestatesofthesystemandthetransitionsbetweenthestates.Thisspeci cationmethodallowesaverycompactspeci cationofthesystemcomparedtoothermethodsandenablestheexperiencedusertospecifylargesystemsveryfast.TheMarkovanalyzerMOSESfacilitatestheinputofMOSLANGandcreatestheMarkoviansystemofequationsp Q=0automatically.HerepisthevectorofthestateprobabilitiesandQisthematrixwhichcontainsthetransitionratesbetweenthedi erentstatesoftheMarkovchain.Qiscreatedinaparameterizedform.Thereforethesystemcanbeanalyzedwithdi erentparameterswithoutchangingtheMarkoviansystemeachtime.Solvingthissystemprovidesthestateprobabilities.Forthispurpose vemethodesaresupported.Withthestateprobabilitiesitispossibletocomputeallspeci edmeasuresautomaticallyusingMOSES.InthenexttwosectionswewilldescribethemaincharactristicsofMOSLANGandshowhowtousethistoolbyspecifyingtwosystems{asimplefaulttolerantmultiprocessorsystemandthemodelofafaulttolerantUNIXoperatingsystem.2GenerationandsolutionofMarkovchainsWiththespeci cationlanguageMOSLANGitispossibletodescribetheMarkoviansysteminaverycompactmanner.Outofthisdescriptionthestatespaceistgeneratedandtheunderlyingsetofequationsissolved.Thisisdoneinseveralsteps.2.1GeneraldescriptionWiththehelpofthedescriptionlanguageMOSLANGthesystemisdescribed.Outofthisdescriptionthestatediagramisgenerated.Thisstatediagramconsistsofstableandunstablesatates.AstateiscalledunstableiftheMarkovprocessdoesnotstayinthatstatebutchangesimmediatelyinanotherstate.Immediatetransitionsareindicatedbytherate-1.0.To