Generation and Solution of Markov Chains Using MOS

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

GenerationandSolutionofMarkovChainsUsingMOSESGunterBolchandStefanGreinerMay1994TR-I4-11-94GenerationandSolutionofMarkovChainsUsingMOSESGunterBolchStefanGreinerHermannJungRaimundZimmerUniversityErlangen-NuernbergInstituteformathematicalmachinesanddataprocessingIVMartensstrasse1D{91058Erlangenbolch@informatik.uni-erlangen.deTechnicalReportTR-I4-11-94AbstractInthispapertheMarkovanalyzerMOSES(MOdelling,SpecicationandEvaluationSystem)andthemodeldescriptionlanguageMOSLANG{bothdevelopedattheInstituteforOperatingSystemsattheUniversityofErlangen{Nuernberg{aredescribedusingtwoexamples.Toevaluatetheperformanceofacomputersystemthesystemhastobespecied.InthispaperthemodeldescriptionlanguageMOSLANGisintroducedandappliedtosomeexamples.ThecoreofMOSLANGconsistsofconstructssuitableforthespecicationofthepossiblestatesofthesystemandofRULEconstructswhichmodelthestatetransitions.ThisspecicationmethodismuchmorecompactthanothercomparablemethodsandenablestheusertospecifylargesystemswhenhehasbecomefamiliarwithMOSLANG.TheMarkovanalyzerMOSESsupportstheinputofMOSLANGandsubsequentlycreatestheMarkoviansystemofequationsautomatically.Forsolvingthissystemofequationsvedierentmethodsareprovided.MOSEScalculatesthestateprobabilitiesandderivesfromthemtheperformancemeasureswhicharespeciedusingMOSLANG.MOSEShasbeenusedtosolvemanydierentproblems,amongothersforanalyzingandcomparingdierentmultiprocessorversionsoftheoperatingsystemUNIX.MOSESisimplementedintheprogramminglanguageCandrunsonallUNIXsystems.1IntroductionIntodayssystemsperformanceevaluationisveryimportantbecauseofthegrowingsystemcomplexityandshouldthereforegohandbyhandwiththedevelopementoftherealsystem.Thereforemeasurementontherealsystemisveryoftennotpossibleandoneneedsamodelofthesystem.InthispaperwewillconcentrateonqueueingmodelsbutthedescriptionlanguageMOSLANGisnotonlyrestrictedtothistypeofmodel.Queueingmodelsareverywellsuitedfortheperformanceevaluationofcomputersystemsbecausetheyareeasytounderstandanddescribethesysteminaverycompactmanner.Forthelimitedclassofproductformqueueingnetworks(PFQN’s)thereexistecientalgorithms(e.g.MeanValueAnalysis,SCAT,Convolution)todeterminethedesiredperformancemeasuresofthesystem.ButalotsofqueueingnetworksdonotfulltherequirementsofPFQN’s.Thesenetworksarecallednonproductformqueueingnetworks(NPFQN’s)andareanalyzedbyapproximatealgorithms.Ifthesealgorithmsarenotexactenoughornotapplicabletoaparticularproblematall{thiscanbethecasewhenratesarenonexponentiallydistributedorblockingisinvolved{thenonenormallyusessimulationwithitswellknowndisadvantagesorMarkoviananalysis.Althoughthestatespaceforsimplesystemscanbeverylargeandgrowsexponentiallyinthesystemcomplexity,Markovanalysisbecomesmoreandmoreimportantbecausenewmathematicalmethodsfor1solvinglargeequationsystemsandincreasingcomputationalpowerenablesscientiststogetsteadystateandtransientperformancemeasuresinanacceptabletimecomparedtosimulation.TheproblemwiththismodelsisthatitisnearlyimpossibletoconstructtheMarkovmodelforacomplexsystembyhand.OnepossibilityforsolvingthisproblemisbymodelingthesystemviastochasticPetrinets.Theseoeramuchhighermodelingpowerthanqueueingnetworks.AveryfamoustoolfordealingwithPetrinetsisSPNP(developedatDukeUniversity)whichconvertsthespecicationofaPetrinetintoaMarkovchainandsolvestheunderlyingequationsystem.Inthispaperanothermethodischoosentospecifyasystem.WiththehelpofanewlanguagecalledMOSLANGthestatespaceoftheMarkovchaincanbedescribedinacompactmanner.ThecoreofMOSLANGconsistsofconstructswhichallowthespecicationofthepossiblestatesofthesystemandthetransitionsbetweenthestates.Thisspecicationmethodallowesaverycompactspecicationofthesystemcomparedtoothermethodsandenablestheexperiencedusertospecifylargesystemsveryfast.TheMarkovanalyzerMOSESfacilitatestheinputofMOSLANGandcreatestheMarkoviansystemofequationspQ=0automatically.HerepisthevectorofthestateprobabilitiesandQisthematrixwhichcontainsthetransitionratesbetweenthedierentstatesoftheMarkovchain.Qiscreatedinaparameterizedform.ThereforethesystemcanbeanalyzedwithdierentparameterswithoutchangingtheMarkoviansystemeachtime.Solvingthissystemprovidesthestateprobabilities.Forthispurposevemethodesaresupported.WiththestateprobabilitiesitispossibletocomputeallspeciedmeasuresautomaticallyusingMOSES.InthenexttwosectionswewilldescribethemaincharactristicsofMOSLANGandshowhowtousethistoolbyspecifyingtwosystems{asimplefaulttolerantmultiprocessorsystemandthemodelofafaulttolerantUNIXoperatingsystem.2GenerationandsolutionofMarkovchainsWiththespecicationlanguageMOSLANGitispossibletodescribetheMarkoviansysteminaverycompactmanner.Outofthisdescriptionthestatespaceistgeneratedandtheunderlyingsetofequationsissolved.Thisisdoneinseveralsteps.2.1GeneraldescriptionWiththehelpofthedescriptionlanguageMOSLANGthesystemisdescribed.Outofthisdescriptionthestatediagramisgenerated.Thisstatediagramconsistsofstableandunstablesatates.AstateiscalledunstableiftheMarkovprocessdoesnotstayinthatstatebutchangesimmediatelyinanotherstate.Immediatetransitionsareindicatedbytherate-1.0.To

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功