国网考试电路典型例题汇总

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

电工基础下例题汇总11’已知线圈绕向判断未知线圈绕向判断22’••一、串联L=L1+L2+2MMLLL2211、顺向串联(顺接)2、反向串联(反接)L1L2UIL=L1+L2-2M(顺接取正,反接取负)互感线圈的串并联二、并联2、异侧并联L1L2MLLMLLL221221(同侧取负,异侧取正)MLLMLLL221221MLLMLLL2212211、同侧并联21UU和例1:图示电路,=100rad/s,U=220V。求解:j300j500j10003002000220jIAj31.5661.0IIjIjU1005003001V74.1194.136IIjIjU10050010002V38.2204.3110220U设解:)2(2121MLLjRRZ顺接:反接:481.81IU212XR302IPR756.751X429.31IU222XR7066.92XMXX421421XXMmH07.53例2:两个耦合线圈,接到220V,50Hz正弦电压上。顺接时I=2.7A,P=218.7W;反接时I=7A。求互感M=?21jXRjXR耦合电感的T型连接及等效变换一、T型连接同侧T型连接L1-ML2-MM21113IMjILjU311)(IMjIMLj12223IMjILjU322)(IMjIMLj去耦等效电路异侧T型连接İ1İ2İ332223)(IMjIMLjU31113)(IMjIMLjU321IIIL1+ML2+M-M例3:图示电路,=10rad/s。分别求K=0.5和K=1时,电路中的电流İ1和İ2以及电阻R=10时吸收的功率.İ1İ2解:去耦等效电路(1)K=0.5,M=0.5H,有0100)(55211IIjIj010)(552212IIIjIjAI87.813.111AI87.21642WP160(2)K=1,M=1H,有0100101021IjIj0)1010(1021IjIjAI452101180102IWP1000解:1)判定同名端:2)去耦等效电路:3)移去待求支路Z,有:01041448jjUocV61.1011.6414)48(62jjjZo67.26.3j••4)戴维南等效电路:*oZZ)(67.26.3j例4:图示电路,求Z为何值可获最大功率?其中:Vttu)1.5310cos(210)(4例题5V)60t3sin(50)tsin(4.14110uA)60t3sin(3.0)70tsin(i0IUP000设两端网络在相关联参考方向下,有1I11cosIUP3333cosIUPW2.24)700cos(2124.141W5.7)6060cos(23.0250310PPPPW7.315.72.24求两端网络吸收的功率解例题6V7.10431100U22A03.45.04I22W8.24376cos5.0311.53cos4100P已知某两端网络的电压、电流为V)t3sin(231)tsin(2100uA)76t3sin(25.0)1.53tsin(24iV)tsin(27.104ueUIParccos7.5403.47.1048.243arccosA)7.54tsin(203.4ie以上两式中ω=314rad/s。式求电压、电流的等效正弦波。解电压电流的有效值各为电路的功率设电压的初相为零等效正弦电压与电流的相位差为等效正弦电流例题7V)]45t3sin(60)tsin(18040[u+-uRLCi在图RLC串联电路中,已知R=10Ω,L=0.05H,C=50μF.电源电压为式中ω=314rad/s。试求电路中的电流i。解(1)直流分量单独作用时I(0)=0(2)一次谐波单独作用时Cj11U+-RLjV012702180U12.784910503141j05.0314j10Z61A2.786.22.784903.127ZUI111I1(3)三次谐波单独作用时V454.4245260U39.687.27105031431j05.03143j10Z63A9.2353.19.687.27454.42ZUI333(4)电流i为各次谐波电流瞬时值之和)9.23t3sin(253.1)2.78tsin(26.2iii31A)9.23t3sin(17.2)2.78tsin(67.3C3j13U+-RL3jI3例题8)t5sin(251)t3sin(91)tsin(A8)t(f2m1)4Tt(5sin251)4Tt(3sin91)4Tt(sinA8)t(f2m2tf1(t)0Am-AmT2TTf2(t)Am0T2t-Am求图所示三角波f2(t)的傅立叶级数展开式。查表得三角波f1(t)展开式为)t5cos(251)t3cos(91)tcos(A82m例题9)t(f)t(f)t(f21平移横轴会使谐波分析简化tf(t)0AmTf1(t)t0Tf2(t)t0Am12求图所示矩形波f(t)的傅立叶级数展开式。解将f(t)分解为f1(t)和f2(t)之和mmA21)t5sin(51)t3sin(31)tsin(A2例题10.6j4LjRZNN1N.30j90LjRZ1对称三相电路中,Y形连接电压源的A相电压Y连接负载每相对基波的阻抗中线对基波的阻抗试求(1)有中线时的iA、iN、uN‘N;(2)中线断开后的iC、uN‘N。V)t5sin(220)t3sin(230)tsin(2160uA解(1)有中线时A4.1869.130j900160ZUI11A1AA7.5417.0)6j34(3)30j390(030Z3ZUI3N33A3AA5911.030j590020ZUI55A5AAIIAN7.5451.07.5417.0333VjIZUNNNN8.224.97.5451.03643)()7.54t3sin(217.0)4.18tsin(269.1iAA)59t5sin(211.0)12059t5sin(211.0)1204.18tsin(269.1iCA)179t5sin(211.0)6.101tsin(269.1V)t3sin(230uu3ANNV)8.22t3sin(24.9uNNA)7.54t3sin(251.0iN(2)中线端开后,0I3A所以例11:图示电路原处于稳态,t=0时开关S闭合,US=10V,R1=10Ω,R2=5Ω,求初始值uC(0+)、i1(0+)、i2(0+)、iC(0+)。解:由于在直流稳态电路中,电容C相当于开路,因此t=0-时电容两端电压分别为:+US-C+uC-St=0i1R1R2iCi2+US-i1(0+)R1R2iC(0+)i2(0+)+uC(0+)-V10)0(SCUu在开关S闭合后瞬间,根据换路定理有:V10)0()0(CCuu由此可画出开关S闭合后瞬间即时的等效电路,如图所示。由图得:A0101010)0()0(1CS1RuUiA2510)0()0(2C2RuiA220)0()0()0(21Ciii例12:图示电路原处于稳态,t=0时开关S闭合,求初始值uC(0+)、iC(0+)和u(0+)。解:由于在直流稳态电路中,电感L相当于短路、电容C相当于开路,因此t=0-时电感支路电流和电容两端电压分别为:4ΩR1R22Ω+u-+CuC-+Us12V-LiL+uL-R36Ωi1iCV2.762.1)0()0()0(A2.16412)0(3L31C31LRiRiuRRUis在开关S闭合后瞬间,根据换路定理有:V2.7)0()0(A2.1)0()0(CCLLuuii由此可画出开关S闭合后瞬间即时的等效电路,如图所示。由图得:4ΩR1R22Ω+Us12V-R36ΩiL(0+)+uL(0+)-+u(0+)-+uC(0+)-i1(0+)iC(0+)A02.12.1)0()0()0(A2.162.7)0()0(1LC31iiiRuiCu(0+)可用节点电压法由t=0+时的电路求出,为:V4.221412.141211)0()0(21L1RRiRUus例13:图示电路,IS=10mA,R1=20kΩ,R2=5kΩ,C=100μF。开关S闭合之前电路已处于稳态,在t=0时开关S闭合。试用三要素法求开关闭合后的uC。解:(1)求初始值。因为开关S闭合之前电路已处于稳态,故在瞬间电容C可看作开路,因此:V20010201010)0()0(331SCCRIuuIS+uC-CR1SR2(2)求稳态值。当t=∞时,电容C同样可看作开路,因此:V40520105201010)(332121SCRRRRIu(3)求时间常数τ。将电容支路断开,恒流源开路,得:k45205202121RRRRR时间常数为:s4.01010010463RC(4)求uC。利用三要素公式,得:V1604040200405.24.0Ctteeu例14:图示电路,US1=9V,US2=6V,R1=6Ω,R2=3Ω,L=1H。开关S闭合之前电路已处于稳态,在t=0时开关S闭合。试用三要素法求开关闭合后的iL和u2。解:(1)求初始值。因为开关S闭合之前电路已处于稳态,故在瞬间电感L可看作短路,因此:(2)求稳态值。当t=∞时,电感L同样可看作短路,因此:A1369)0()0(21S1LLRRUiiA236)(2S2LRUi+US1-iL+u2-LSR2R1+US2-V313)0()0(L22iRuV623)()(L22iRu(3)求时间常数τ。将电感支路断开,恒压源短路,得:时间常数为:(4)求iL和u2。利用三要素公式,得:32RRs31RLA221233LtteeiV36636332tteeu例15:图示电路有两个开关S1和S2,t0时S1闭合,S2打开,电路处于稳态。t=0时S1打开,S2闭合。已知IS=2.5A,US=12V,R1=2Ω,R2=3Ω,R3=6Ω,C=1F。求换路后的电容电压uC,并指出其稳态分量、暂态分量、零输入响应、零状态响应,画出波形图。解:(1)全响应=稳态分量+暂态分量ISS1C+uC-R3+US-R1R2S2稳态分量V412633)(322CCSURRRuu初始值V332325.2)0()0(2121SCCRRRRIuu时间常数s2163633232CRR

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功