天津市高考数学复习专题能力训练14空间中的平行与垂直理

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

专题能力训练14空间中的平行与垂直一、能力突破训练1.如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C12.如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,点P在△AEF内的射影为O.则下列说法正确的是()A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心3.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)4.已知正四棱锥S-ABCD的底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.5.下列命题中正确的是.(填上你认为正确的所有命题的序号)①空间中三个平面α,β,γ,若α⊥β,γ⊥β,则α∥γ;②若a,b,c为三条两两异面的直线,则存在无数条直线与a,b,c都相交;③若球O与棱长为a的正四面体各面都相切,则该球的表面积为a2;④在三棱锥P-ABC中,若PA⊥BC,PB⊥AC,则PC⊥AB.6.在正三棱柱A1B1C1-ABC中,点D是BC的中点,BC=BB1.设B1D∩BC1=F.求证:(1)A1C∥平面AB1D;(2)BC1⊥平面AB1D.7.如图,在四棱锥P-ABCD中,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离.8.(2018全国Ⅰ,理18)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.二、思维提升训练9.(2018浙江,8)已知四棱锥S-ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S-AB-C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ110.如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成角的正弦值.11.如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将△ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.12.已知正三棱柱ABC-A1B1C1中,AB=2,AA1=,点D为AC的中点,点E在线段AA1上.(1)当AE∶EA1=1∶2时,求证:DE⊥BC1;(2)是否存在点E,使三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的?若存在,求AE的长,若不存在,请说明理由.13.如图,在四边形ABCD中(如图①),E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将△ABD(如图①)沿直线BD折起,使二面角A-BD-C为60°(如图②).(1)求证:AE⊥平面BDC;(2)求异面直线AB与CD所成角的余弦值;(3)求点B到平面ACD的距离.专题能力训练14空间中的平行与垂直一、能力突破训练1.D解析易知A1C1⊥平面BB1D1D.∵B1O⊂平面BB1D1D,∴A1C1⊥B1O,故选D.2.A解析如图,易知PA,PE,PF两两垂直,∴PA⊥平面PEF,从而PA⊥EF,而PO⊥平面AEF,则PO⊥EF,∴EF⊥平面PAO,∴EF⊥AO.同理可知AE⊥FO,AF⊥EO,∴O为△AEF的垂心.3.②③④解析对于①,若m⊥n,m⊥α,n∥β,则α,β的位置关系无法确定,故错误;对于②,因为n∥α,所以过直线n作平面γ与平面α相交于直线c,则n∥c.因为m⊥α,所以m⊥c,所以m⊥n,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.4解析如图,取CD的中点F,SC的中点G,连接EF,EG,FG.设EF交AC于点H,连接GH,易知AC⊥EF.又GH∥SO,∴GH⊥平面ABCD,∴AC⊥GH.又GH∩EF=H,∴AC⊥平面EFG.故点P的轨迹是△EFG,其周长为5.②③④解析①中也可以α与γ相交;②作平面与a,b,c都相交;③中可得球的半径为r=a;④中由PA⊥BC,PB⊥AC得点P在底面△ABC的射影为△ABC的垂心,故PC⊥AB.6.证明(1)连接A1B,设A1B交AB1于点E,连接DE.∵点D是BC的中点,点E是A1B的中点,∴DE∥A1C.∵A1C⊄平面AB1D,DE⊂平面AB1D,∴A1C∥平面AB1D.(2)∵△ABC是正三角形,点D是BC的中点,∴AD⊥BC.∵平面ABC⊥平面B1BCC1,平面ABC∩平面B1BCC1=BC,AD⊂平面ABC,∴AD⊥平面B1BCC1.∵BC1⊂平面B1BCC1,∴AD⊥BC1.∵点D是BC的中点,BC=BB1,∴BD=BB1.,∴Rt△B1BD∽Rt△BCC1,∴∠BDB1=∠BC1C.∴∠FBD+∠BDF=∠C1BC+∠BC1C=90°.∴BC1⊥B1D.∵B1D∩AD=D,∴BC1⊥平面AB1D.7.(1)证法一取AD的中点O,连接OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD.又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,所以AD⊥平面POC.又PC⊂平面POC,所以PC⊥AD.证法二连接AC,依题意可知△PAD,△ACD均为正三角形.因为M为PC的中点,所以AM⊥PC,DM⊥PC.又AM∩DM=M,AM⊂平面AMD,DM⊂平面AMD,所以PC⊥平面AMD.因为AD⊂平面AMD,所以PC⊥AD.(2)证明当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连接QM,QA.因为M为PC的中点,所以QM∥BC.在菱形ABCD中,AD∥BC,所以QM∥AD,所以A,Q,M,D四点共面.(3)解点D到平面PAM的距离即点D到平面PAC的距离.由(1)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,即PO为三棱锥P-ACD的高.在Rt△POC中,PO=OC=,PC=,在△PAC中,PA=AC=2,PC=,边PC上的高AM=,所以△PAC的面积S△PAC=PC·AM=设点D到平面PAC的距离为h,由VD-PAC=VP-ACD,得S△PAC·h=S△ACD·PO.因为S△ACD=22=,所以h=,解得h=,所以点D到平面PAM的距离为8.(1)证明由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,||为单位长,建立如图所示的空间直角坐标系H-xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=又PF=1,EF=2,故PE⊥PF.可得PH=,EH=则H(0,0,0),P,D为平面ABFD的法向量.设DP与平面ABFD所成角为θ,则sinθ=所以DP与平面ABFD所成角的正弦值为二、思维提升训练9.D解析当点E不是线段AB的中点时,如图,点G是AB的中点,SH⊥底面ABCD,过点H作HF∥AB,过点E作EF∥BC,连接SG,GH,EH,SF.可知θ1=∠SEF,θ2=∠SEH,θ3=∠SGH.由题意可知EF⊥SF,故tanθ1==tanθ3.∴θ1θ3.又tanθ3==tanθ2,∴θ3θ2.∴θ1θ3θ2.当点E是线段AB的中点时,即点E与点G重合,此时θ1=θ3=θ2.综上可知,θ1≥θ3≥θ2.10.(1)证明①因为C1B1∥A1D1,C1B1⊄平面ADD1A1,所以C1B1∥平面ADD1A1.因为平面B1C1EF∩平面ADD1A1=EF,所以C1B1∥EF.所以A1D1∥EF.②因为BB1⊥平面A1B1C1D1,所以BB1⊥B1C1.因为B1C1⊥B1A1,所以B1C1⊥平面ABB1A1,所以B1C1⊥BA1.在矩形ABB1A1中,F是AA1的中点,即tan∠A1B1F=tan∠AA1B=,即∠A1B1F=∠AA1B.故BA1⊥B1F.又B1F∩B1C1=B1,所以BA1⊥平面B1C1EF.(2)解设BA1与B1F的交点为H,连接C1H(如图).由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与平面B1C1EF所成的角.在矩形ABB1A1中,AB=,AA1=2,得BH=在Rt△BHC1中,BC1=2,BH=,得sin∠BC1H=所以BC1与平面B1C1EF所成角的正弦值是11.(1)解线段AB上存在一点K,且当AK=AB时,BC∥平面DFK.证明如下:设H为AB的中点,连接EH,则BC∥EH.又因为AK=AB,F为AE的中点,所以KF∥EH,所以KF∥BC.因为KF⊂平面DFK,BC⊄平面DFK,所以BC∥平面DFK.(2)证明因为F为AE的中点,DA=DE=1,所以DF⊥AE.因为平面ADE⊥平面ABCE,所以DF⊥平面ABCE.因为BE⊂平面ABCE,所以DF⊥BE.又因为在折起前的图形中E为CD的中点,AB=2,BC=1,所以在折起后的图形中AE=BE=,从而AE2+BE2=4=AB2,所以AE⊥BE.因为AE∩DF=F,所以BE⊥平面ADE.因为BE⊂平面BDE,所以平面BDE⊥平面ADE.12.(1)证明因为三棱柱ABC-A1B1C1为正三棱柱,所以△ABC是正三角形.因为D是AC的中点,所以BD⊥AC.又平面ABC⊥平面CAA1C1,所以BD⊥DE.因为AE∶EA1=1∶2,AB=2,AA1=,所以AE=,AD=1,所以在Rt△ADE中,∠ADE=30°.在Rt△DCC1中,∠C1DC=60°,所以∠EDC1=90°,即DE⊥DC1.因为C1D∩BD=D,所以DE⊥平面BC1D,所以DE⊥BC1.(2)解假设存在点E满足题意.设AE=h,则A1E=-h,所以-S△AED-=2h-(-h)-h.因为BD⊥平面ACC1A1,所以h,又V棱柱=2=3,所以h=1,解得h=,故存在点E,当AE=,即E与A1重合时,三棱锥C1-BDE的体积恰为三棱柱ABC-A1B1C1体积的13.(1)证明如图,取BD的中点M,连接AM,ME.∵AB=AD=,DB=2,∴AM⊥BD.∵DB=2,DC=1,BC=满足DB2+DC2=BC2,∴△BCD是以BC为斜边的直角三角形,BD⊥DC,∵E是BC的中点,∴ME为△BCD的中位线,ME�CD,∴ME⊥BD,ME=,∴∠AME是二面角A-BD-C的平面角,∴∠AME=60°.∵AM⊥BD,ME⊥BD,且AM,ME是平面AME内两相交于M的直线,∴BD⊥平面AEM.∵AE⊂平面AEM,∴BD⊥AE.∵△ABD为等腰直角三角形,∴AM=BD=1.在△AEM中,∵AE2=AM2+ME2-2AM·ME·cos∠AME=1+-2×1cos60°=,∴AE=,∴AE2+ME2=1=AM2,∴AE⊥ME.∵BD∩ME=M,BD⊂平面BDC,ME⊂平面BDC,∴AE⊥平面BD

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功