博弈论 第五章(Chapter 5)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Lecture5SequentialGamesandBackwardInductionZhenfaXieDepartmentofPE,SE,XMUAGame:CashinAHat(ToyVersionofLenderandBorrower)Player1canput$0,$1,or$3inahatThehatispassedtoplayer2Player2caneither“match”(i.e.addthesameamount)ortakethecashPayoffs:Player1:0→0;1→doubleifmatch,-1ifnot;3→doubleifmatch,-3ifnot.Player2:1.5ifmatch1;2ifmatch2;the$inthehatiftakes.2SequentialMoveGamePlayer2knowsplayer1’schoicebefore2chooses;Player1knowsthatthiswillbethecase.3AGame:CashinAHat40,01,1.5-1,13,2-3,30131-13-3122BackwardInduction5Lookforward,workback.0,01,1.5-1,13,2-3,30131-13-3122MoralHazard6Moralhazard:agenthasincentivestodothingsthatarebadfortheprincipal.Examplein“cashinahat”:keptthesizeofloan/projectsmalltoreducethetemptationtocheat.IncentiveDesign7Changecontracttogiveincentivesnottoshirk“Asmallshareofalargepie”canbebiggerthan“alargeshareofasmallpie”.IncentiveDesign80,01,1.5-1,11.9,3.1-3,30131-13-3122IncentiveContracts9PieceratesSharecroppingCollateralSubtracthousefromrunawaypayoffsLowerspayoffstoborroweratsometreepoint,yetmaketheborrowerbetterofchangesthechoicesofothersinawaythathelpsyouCollateral100,01,1.5-1,1(-house)3,2-3,3(-house)0131-13-3122CommitmentStrategy11GettingridofchoicescanmakemebetteroffCommitment:tohavefeweroptionsanditchangesthebehaviorofothersKnowledge:theotherplayersmustknowthesituationchanged破釜沉舟12CommitmentStrategy130,02,11,20,02,1FRA项章章项项项项NotburnburnFFFFFRARARA1,2Liongame14Stackelberg’sDuopolyGameConstantUnitCostandLinearInverseDemandPlayers:thetwofirms(aleaderandafollower);Timing:Firm1choosesaquantity;Firm2observesandthenchoosesaquantity;Payoff:Eachfirm’spayoffisrepresentedbyitsprofit.10q1q20q15BasicAssumptionsConstantunitcost:Linearinversedemandfunction:Assume:foralliiiiCqcqqif,0ifiQQPQQqQc16BackwardinductionFirstcomputefirm2’sreactiontoanarbitraryquantitybyfirm1:Nextfirm1’sprobleminthefirststageofthegameamountsto:Thustheoutcomeofthegameis:222122120011211max(,)max[]if()20ifqqqqqqqcqcqcbqqc1111121112100110max(,())max()1max()2qqqqbqqqbqcqcq**1221and()24ccqqbq17ConclusionTheoutcomeoftheequilibriumoutputis:Firm1’sprofitis,andfirm2’sprofitis.Bycontrast,intheuniqueNashequilibriumofCournot’s(simultaneous-move)gameunderthesameassumptions,eachfirmproducesunitsofoutputandobtainstheprofit.Thusfirm1producesmoreoutputandobtainsmoreprofitinthesubgameperfectequilibriumofthesequentialgame,andfirm2produceslessoutputandobtainslessprofit.**12and24ccqq218()c2116()c219()c13()c18Lessons19Commitment:sunkcostscanhelpSpyorhavingmoreinformationcanhurtyouKey:theotherplayersknewyouhadmoreinformationReason:itcanleadotherplayerstotakeactionsthathurtyouFirst-moveradvantageFirst-moveradvantage20Yessometimes:StackelbergButnotalways—SecondmoveradvantageRock,paper,scissorsInformationhereishelpfulSometimesneitherfirstnorsecondmoveradvantageDivideacakewithyoursibling:Isplit,youchoose.ItcanbefirstorsecondmoveradvantagewithinthesamegamedependingonsetupThegameofNimTheGameofNimPilesequal→secondmoveradvantagePilesunequal→firstmoveradvantage21Definitions22PerfectinformationAgameofperfectinformationisoneinwhichateachnode,theplayerwhoseturnitistomoveknowswhichnodesheisat(andhowshegotthere).PurestrategyApurestrategyforplayeriinagameofperfectinformationisacompleteplanofactions:Itspecifieswhichactioniwilltakeateachofitsdecisionnodes.EntryGameChallengerOut0,3InIncumbentAcquiesceFight1,1-1,023EntryGameInentrygame,thestrategiesis:Challenger:In,OutIncumbent:Strategy1(s1):PlayAcquiesceifChallengerplaysIn;Strategy2(s2):PlayFightifChallengerplaysIn.24Example11DC2EF2,13,00,21,3GH225Example1Play1hastwostrategies:CandD;Play2hasfourstrategies:EG,EH,FG,FH.ActionassignedtohistoryCActionassignedtohistoryDStrategy1EGStrategy2EHStrategy3FGStrategy4FH26Example21DC22,0EF3,110,01,2GH27Example2Player1hasfourstrategies:CG,CH,DG,DH.Inparticular,eachstrategyspecifiesanactionafterthehistory(C,E)evenifitspecifiestheactionDatthebeginningofthegame,inwhichcasethehistory(C,E)doesnotoccur!Player2hastwostrategies:EandF.28ThestrategicformoftheentrygameanditsNashequilibriumsIncumbentAcquiesceFightChallengerIn1*,1*-1,0Out0,3*0*,3*NE:(In,Acquiesce)←BackwardInduction(Out,Fight)ItisaNEthatreliesonbelievinganincrediblethreat.29Chain-storeParadox2020/1/26厦门大学财政系谢贞发30试想一个博弈:在每个省会城市,都有麦当劳连锁店,每个城市都有一个挑战者想进入该行业。请利用backwardinduction寻找该博弈的均衡。如果你是麦当劳在中国的总代理,你会怎么做?如何解释“连锁店悖论”?EntryGameinMarketkChallengerkOut0,3InIncumbentAcquiesceFight1,1-1,031Chain-storeParadox2020/1/26厦门大学财政系谢贞发32Youcanfindauniqueoutcomebybackwardinduction,inwhicheverychallengerentersandthechain-storealwaysacquiescestoentry.Butinrealityyoumayobservethateverypreviouschallengerenteredandthatthechain-storefoughteachone,thenfuturechallengersstayout.Chain-storeParadox2020/1/26厦门大学财政系谢贞发33TwopointsSmallprobabilityofcrazychangesthingsIfɛ-chance(1%)thatthechain-storeiscraze,thenhecandeterentrybyfighting:seemingcraze.Reputationmatters兵临城下34DuelGame2020/1/26厦门大学财政系谢贞发35Players:2pla

1 / 66
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功