MATHEMATICAL THEORY OF MEDIAL AXIS

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

pacificjournalofmathematicsVol.181,No.1,1997MATHEMATICALTHEORYOFMEDIALAXISTRANSFORMHyeongInChoi,SungWooChoiandHwanPyoMoonThemedialaxisofaplanedomainisde nedtobethesetofthecentersofthemaximalinscribeddisks.Itisessentiallythecutlocioftheinwardunitnormalbundleoftheboundary.Weprovethatifaplanedomainhas nitenumberofboundarycurveseachofwhichconsistsof nitenumberofrealanalyticpieces,thenthemedialaxisisaconnectedgeometricgraphinR2with nitelymanyverticesandedges.AndeachedgeisarealanalyticcurvewhichcanbeextendedintheC1mannerattheendvertices.Weclarifytherelationbetweenthevertexdegreeandthelocalgeometryofthedomain.Wealsoanalyzevariouscontinuityandregularityresultsindetail,andshowthatthemedialaxisisastrongdeformationretractofthedomainwhichmeansinthepracticalsensethatitretainsallthetopologicalinformationsofthedomain.Wealsoobtainparallelresultsforthemedialaxistransform.1.Introduction.Oneofthedicultproblemsinglobaldi erentialgeometryistheprecisedescriptionandtheexactdeterminationofthecutlociofaset.Itisbecauseacutlocusarisesasacriticalpointofacertaindistancefunction,andstudyingitisingeneralanontrivialproblem.Inthispaper,westudythefollowingversion:LetΩbeaconnectedboundeddomaininR2.LetCORE(Ω)bethesetofthemaximalinscribeddisksinΩ.Wede nethemedialaxis,denotedbyMA(Ω),tobethesetofthecentersofthedisksinCORE(Ω).ThusifΩhassmoothboundary,MA(Ω)isessentiallythesetofthecutlocioftheinwardpointingunitnor-malbundleof@Ω.ButsinceweallowΩtohavecorners,ourcaseincludesaslightlymoregeneralnotion.(ConsultDe nition4:4anditssubsequentrole.)Wecanalsode nethemedialaxistransform,denotedbyMAT(Ω),tobethesetofthepairsconsistingofthecenterandtheradiusofthedisksinCORE(Ω).Themedialaxisisacontinuousversionoftheso-calledVoronoidiagramwhichwasintroducedbyVoronoi[14].Voronoidiagramwasoriginallyde- nedfora nitesetofpointsinR2,andinfactthisandtherelatednotionscanbetracedasfarbackastoDirichlet[3].5758HYEONGINCHOI,SUNGWOOCHOIANDHWANPYOMOONAlthoughthemedialaxisisanaturalgeometricobject,itscarefulmathe-maticalstudyhasbeenlackinginthepuremathematicscommunities.How-ever,themedialaxistransformhasbeenwidelyusedintheengineeringandthecomputersciencecommunity.Themodernincarnationoftheme-dialaxistransformwasintroducedbyBlum[1]toextractandrepresentthesalientfeaturesofaplanarshape(domain).Sincethen,therehasbeenaproli camountofliteraturesinmanyapplicationareassuchasvision,pat-ternrecognition,NCtoolpathplanning,andFEMmeshgeneration,andsoon.However,theengineeringandthecomputersciencecommunitiesaremainlyinterestedinthealgorithmicaspectsofactually ndingthemedialaxistransformunderspeci cconditionsonthedomain,andtheyseemtobelessinterestedinpinningdowntheintricatemathematicaldetailsforgeneralclassofdomains.Mostoftheknownresultsdealwiththedomainwiththeboundaryconsistingoflinesegmentsandpiecesofcirculararcs.Thesecanbefoundin[5,8,9,10,13,16],tonameafew.However,evenintheapplicationareas,theboundarycurvesneedtobeofmuchmoregeneralform.ThekindofcurverepresentationacceptedasthemostgeneralinapplicationiscalledtheNURBS,i.e.,Non-UniformRationalB-Splines.Mathematically,theyariseassplinesintheprojectivegeometry,andtheyareallrationalfunctionsofthecurveparameter,But,inthisgenerality,notsomuchisknownforthemedialaxistransform.OurpaperwithN.-S.Wee[2]givesagoodapproximatealgorithmwhichworkswellinpracticalsituationswithverygeneralboundarycurveassumptions,i.e.,boundaryisassumedtobecomposedof nitenumberofrealanalyticcurves.Inprovingthatouralgorithmworksandterminatesin nitesteps,etc.,wehadtohavetherigorousmathematicalfoundation.Asweponderedovertheseissues,wediscoveredmanyinterestingpiecesofmathematics.Thispaperisanoutgrowthofthat.Oneimportantobservationthatisrelevanttooursubsequentanalysisistheregularityassumptionofthedomain.Contrarytocommonbelief,itisnotenoughtoassumethattheboundarycurveisC1.Infact,weshowthatthereareplentyofdomainswithC1boundarythathavepathologicalbehavior.Forexample,therearedomainswithC1boundarythathavein nitelymanyinscribedosculatingcircles,orin nitelymanybifurcationcircles.Or,theymayhaveamedialaxispointfromwhichin nitelymanybranchesofthemedialaxisemanate.Thesemaymakethemedialaxisanin nitegraph.Infact,itispossibletocreateallkindsofpathologicalexampleswiththeC1assumptionontheboundary.Thuswehavetorestricttheclassofdomainsinordertodomeaningfulanalysis.Thedomainsweconsideraretheoneswith nitelymanyboundarycurveseachofwhichconsistsof nitenumberofrealanalyticpieces.TheMEDIALAXISTRANSFORM59realanalyticpiecesintheboundarymaymeetwitheachotherintheC1manner,ormaymeetatacorner.Thiskindofrestrictionsposenoreallossinmostpracticallyimportantsituations,sincealmostalldomainsthathavepracticalimportancehavethisproperty.Forinstance,theboundarycurvesmayberepresentedasNURBScurveswhichfallintothiscategory.Wecannothelpbelievingthatourassumptionisthemostnaturalandoptimalinpractice.Thebasicstrategyofouranalysisisajudiciouscombinationoflocaldif-ferentialgeometryandsomeofthetoolswedevelop.ThemostimportanttoolistheDomainDecompositionLemmawhichenablesustobreakupthedomainintosimplerpieces,thuslocalizingtheanalysis.Wea

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功