1.3简单曲线的极坐标方程3、极坐标与直角坐标的互化公式复习1、极坐标系的四要素2、点与其极坐标一一对应的条件极点;极轴;长度单位;角度单位及它的正方向。)0(tan,222xxyyxsin,cosyx)2,0[,0曲线的极坐标方程一、定义:如果曲线C上的点与方程f(,)=0有如下关系(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方程f(,)=0;(2)方程f(,)=0的所有解为坐标的点都在曲线C上。则曲线C的方程是f(,)=0。探究:如图,半径为a的圆的圆心坐标为(a,0)(a0),你能用一个等式表示圆上任意一点的极坐标(,)满足的条件?xC(a,0)O例1、已知圆O的半径为r,建立怎样的坐标系,可以使圆的极坐标方程更简单?题组练习1求下列圆的极坐标方程(1)中心在极点,半径为2;(2)中心在C(a,0),半径为a;(3)中心在(a,/2),半径为a;(4)中心在C(0,0),半径为r。=2=2acos=2asin2+02-20cos(-0)=r2练习3以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是.2cos.2sin44.2cos1.2sin1ABCDC41)42()42(02222sin22cos224sinsin4coscos22222yxyxyx即=解:cos()4把极坐标方程转化为直角坐标系下的方程直线的极坐标方程答:与直角坐标系里的情况一样,求曲线的极坐标方程就是找出曲线上动点P的坐标与之间的关系,然后列出方程(,)=0,再化简并讨论。怎样求曲线的极坐标方程?例题1:求过极点,倾角为的射线的极坐标方程。4oMx﹚4分析:如图,所求的射线上任一点的极角都是,其/4极径可以取任意的非负数。故所求直线的极坐标方程为(0)4新课讲授1、求过极点,倾角为的射线的极坐标方程。54易得5(0)4思考:2、求过极点,倾角为的直线的极坐标方程。4544或和前面的直角坐标系里直线方程的表示形式比较起来,极坐标系里的直线表示起来很不方便,要用两条射线组合而成。原因在哪?0为了弥补这个不足,可以考虑允许极径可以取全体实数。则上面的直线的极坐标方程可以表示为()4R和5()4R例题2、求过点A(a,0)(a0),且垂直于极轴的直线L的极坐标方程。解:如图,设点(,)M为直线L上除点A外的任意一点,连接OMox﹚AM在中有RtMOAcosOMMOAOA即cosa可以验证,点A的坐标也满足上式。求直线的极坐标方程步骤1、根据题意画出草图;2、设点是直线上任意一点;(,)M3、连接MO;4、根据几何条件建立关于的方程,并化简;,5、检验并确认所得的方程即为所求。例题3设点P的极坐标为,直线过点P且与极轴所成的角为,求直线的极坐标方程。11(,)lloxMP﹚﹚11解:如图,设点(,)M点P外的任意一点,连接OM为直线上除则由点P的极坐标知,OMxOM1OP1xOP设直线L与极轴交于点A。则在MOP1,()OMPOPM由正弦定理得11sin[()]sin()11sin()sin()显然点P的坐标也是它的解。1.小结:(1)曲线的极坐标方程概念(2)圆的极坐标方程2.直线的几种极坐标方程1)过极点2)过某个定点,且垂直于极轴3)过某个定点,且与极轴成一定的角度