高考中常见的七种含有绝对值的不等式的解法的讲义

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高考中常见的七种含有绝对值的不等式的解法类型一:形如)()(,)(Raaxfaxf型不等式解法:根据a的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.1、当0a时,axfaaxf)()(axfaxf)()(或axf)(2、当0aaxf)(,无解axf)(使0)(xf的解集3、当0a时,axf)(,无解axf)(使)(xfy成立的x的解集.例1不等式22xx的解集为()A.)2,1(B.)1,1(C.)1,2(D.)2,2(2类型二:形如)0()(abbxfa型不等式解法:将原不等式转化为以下不等式进行求解:bxfaabbxfa)()0()(或axfb)(需要提醒一点的是,该类型的不等式容易错解为:bxfaabbxfa)()0()(例2不等式311x的解集为()A.)2,0(B.)4,2()0,2(C.)0,4(D.)2,0()2,4(类型三:形如)()(xgxf,)()(xgxf型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把)(xg看成一个大于零的常数a进行求解,即:)()()()()(xgxfxgxgxf,)()()()(xgxfxgxf或)()(xgxf3例3(2007年广东高考卷)设函数312)(xxxf,若5)(xf,则x的取值范围是类型四:形如)()(xgxf型不等式解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:22)()()()(xgxfxgxf0)]()()][()([0)]([)]([22xgxfxgxfxgxf例4(2009年山东高考理科卷)不等式0212xx的解集为类型五:形如)()(),()(xfxfxfxf型不等式解法:先利用绝对值的定义进行判断,再进一步求解,即:)()(xfxf,无解0)()()(xfxfxf类型六:形如使cnxmxcnxmx,恒成立型不等式.解法:利用和差关系式:bababa,结合极端性原理即可解得,即:mnnxmxnxmxcnxmxcmax;mnnxmxnxmxcnxmxcmin;例6(2010高考安徽卷)不等式aaxx3132对任意的实数恒成立,则实数a的取值范围是()A.,41,B.,52,C.2,1D.,21,4类型七:形如,)()(axgxf为常数aaxgxf)()()()()(xhxgxf,)()()(xhxgxf,)()(axgxf为常数aaxgxf)()()()()(xhxgxf,)()()(xhxgxf例7解不等式112xx2、特别地,对于形如,)()(axgxf为常数aaxgxf)()()()()(xhxgxf,)()()(xhxgxf型不等式的解法,除了可用零点分段法外,更可转化为以下不等式,即:)()()(xhxgxf)()()()()()(xhxgxfxhxgxf)()()(xhxgxf)()()(xhxgxf或)()()(xhxgxf例8(2009年辽宁高考理科卷)设函数axxxf1)((1)若1a,解不等式3)(xf(2)如果,2)(,xfRx求a的范围

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功