线性代数习题答案(复旦版周勇_朱砾)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1线性代数习题及答案allin习题一1.求下列各排列的逆序数.(1)341782659;(2)987654321;(3)n(n1)…321;(4)13…(2n1)(2n)(2n2)…2.【解】(1)τ(341782659)=11;(2)τ(987654321)=36;(3)τ(n(n1)…3·2·1)=0+1+2+…+(n1)=(1)2nn;(4)τ(13…(2n1)(2n)(2n2)…2)=0+1+…+(n1)+(n1)+(n2)+…+1+0=n(n1).2.略.见教材习题参考答案.3.略.见教材习题参考答案.4.本行列式4512312123122xxxDxxx的展开式中包含3x和4x的项.解:设123412341234()41234(1)iiiiiiiiiiiiDaaaa,其中1234,,,iiii分别为不同列中对应元素的行下标,则4D展开式中含3x项有(2134)(4231)333(1)12(1)32(3)5xxxxxxxxx4D展开式中含4x项有(1234)4(1)2210xxxxx.5.用定义计算下列各行列式.(1)0200001030000004;(2)1230002030450001.【解】(1)D=(1)τ(2314)4!=24;(2)D=12.6.计算下列各行列式.2(1)2141312112325062;(2)abacaebdcddebfcfef;(3)100110011001abcd;(4)1234234134124123.【解】(1)1250623121012325062rrD;(2)1114111111Dabcdefabcdef;210110111(3)(1)111011001011;bcDaabcdccddddabcdabadcd321221133142144121023410234102341034101130113(4)160.10412022200441012301110004rrccrrccrrrrccrrD7.证明下列各式.(1)22222()111aabbaabbab;(2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)aaaabbbbccccdddd;(3)232232232111()111aaaabbabbccabbcccc3(4)20000()0000nnababDadbccdcd;(5)121111111111111nniiiinaaaaa.【证明】(1)1323223()()()2()2001()()()()()2()21ccccababbabbababbababbababbabababab左端右端.(2)32213142412222-2-2232221446921262144692126021446921262144692126ccccccccccaaaaaabbbbbbccccccdddddd左端右端.(3)首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11xxxaaafxxaxbxcabacbcbbbccc从上面的4阶范德蒙行列式知,多项式f(x)的x的系数为2221()()()()(),11aaabbcacabacbcabbcacbbcc但对(*)式右端行列式按第一行展开知x的系数为两者应相等,故231123231(1),11aabbcc(4)对D2n按第一行展开,得422(1)2(1)2(1)00000000(),nnnnababababDabcdcdcdcddcadDbcDadbcD据此递推下去,可得222(1)2(2)112()()()()()()nnnnnnDadbcDadbcDadbcDadbcadbcadbc2().nnDadbc(5)对行列式的阶数n用数学归纳法.当n=2时,可直接验算结论成立,假定对这样的n1阶行列式结论成立,进而证明阶数为n时结论也成立.按Dn的最后一列,把Dn拆成两个n阶行列式相加:112211211111011111110111111101111111.nnnnnnaaaaDaaaaaaD但由归纳假设11121111,nnniiDaaaa从而有11211211121111111111.nnnnniinnnnniiiiiiDaaaaaaaaaaaaaaa8.计算下列n阶行列式.5(1)111111nxxDx(2)122222222232222nDn;(3)000000000000nxyxyDxyyx.(4)nijDa其中(,1,2,,)ijaijijn;(5)2100012100012000002100012nD.【解】(1)各行都加到第一行,再从第一行提出x+(n1),得11111[(1)],11nxDxnx将第一行乘(1)后分别加到其余各行,得1111110[(1)](1)(1).001nnxDxnxnxx(2)213111222210000101001002010002nrrnrrrrDn按第二行展开222201002(2)!.00200002nn6(3)行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)000000000000(1)(1).nnnnnnnnxyyxyxyDxyxyxyyxxyxxyyxy(4)由题意,知1112121222120121101221031230nnnnnnnnaaanaaaDnaaannn0122111111111111111111111nn后一行减去前一行自第三行起后一行减去前一行01221122111111200002000020000000002000020nnnn按第一列展开1122000201(1)(1)(1)(1)2002nnnnnn-按第列展开.7(5)210002000001000121001210012100012000120001200000210002100021000120001200012nD122nnDD.即有112211nnnnDDDDDD由112211nnnnDDDDDDn得11,121nnDDnDnn.9.计算n阶行列式.121212111nnnnaaaaaaDaaa【解】各列都加到第一列,再从第一列提出11niia,得232323123111111,11nnnnininaaaaaaDaaaaaaa将第一行乘(1)后加到其余各行,得23111010011.00100001nnnniiiiaaaDaa10.计算n阶行列式(其中0,1,2,,iain).81111123222211223322221122331111123nnnnnnnnnnnnnnnnnnnnnnnaaaaababababDababababbbbb.【解】行列式的各列提取因子1(1,2,,)njajn,然后应用范德蒙行列式.3121232222312112123111131212311211111()().nnnnnnnnnnnnnjinnjinijbbbbaaaabbbbDaaaaaaabbbbaaaabbaaaaa11.已知4阶行列式41234334415671122D;试求4142AA与4344AA,其中4jA为行列式4D的第4行第j个元素的代数余子式.【解】41424142234134(1)(1)3912.344344567167AA同理43441569.AA12.用克莱姆法则解方程组.(1)123123412342345,21,22,233.xxxxxxxxxxxxxx(2)1212323434545561,560,560,560,51.xxxxxxxxxxxxx【解】方程组的系数行列式为91110111013113121110131180;1210521211012112301401230123D1234511015101111211118;36;2211121131230323115011152111211136;18.1221121201330123DDDD故原方程组有惟一解,为312412341,2,2,1.DDDDxxxxDDDD12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665DDDDDDxxxxx13.λ和μ为何值时,齐次方程组1231231230,0,20xxxxxxxxx有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121即(1)0.故0或1时,方程组有非零解.14.问:齐次线性方程组12341234123412340,20,30,0xxxaxxxxxxxxxxxaxbx10有非零解时,a,b必须满足什么条件?【解】该齐次线性方程组有非零解,a,b需满足11112110,113111aab即(a+1)2=4b.15.求三次多项式230123()fxaaxaxax,使得(1)0,(1)4,(2)3,(3)16.ffff【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.faaaafaaaafaaaafaaaa这是关于四个未知数0123,,,aaaa的一个线性方程组,由于012348,336,0,240,96.DDDDD故得01237,0,5,2aaaa于是所求的多项式为23()752fxxx16.求出使一平面上三个点112233(,),(,),(,)xyxyxy位于同一直线上的充分必要条件.【解】设平面上的直线方程为ax+by+c=0(a,b不同时为0)按题设有1122330,0,0,axbycaxbycaxbyc则以a,b,c为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101xyxyxy上式即为三点112233(,),(,),(,)xyxyxy位于同一直线上的充分必要条件.11习题二1.计算下列矩阵的乘积.(1)11321023=;(2)500103120213;(3)32123410

1 / 88
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功