线性代数习题解答(同济大学(第四版))

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第一章行列式1.利用对角线法则计算下列三阶行列式:(1)381141102;(2)bacacbcba(3)222111cbacba;(4)yxyxxyxyyxyx.解(1)381141102811)1()1(03)4(2)1()4(18)1(2310=416824=4(2)bacacbcbacccaaabbbcbabacacb3333cbaabc(3)222111cbacba222222cbbaacabcabc))()((accbba(4)yxyxxyxyyxyxyxyxyxyxyyxx)()()(333)(xyxy33322333)(3xyxxyyxyyxxy)(233yx2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1234;(2)4132;(3)3421;(4)2413;(5)13…)12(n24…)2(n;(6)13…)12(n)2(n)22(n…2.2解(1)逆序数为0(2)逆序数为4:41,43,42,32(3)逆序数为5:32,31,42,41,21(4)逆序数为3:21,41,43(5)逆序数为2)1(nn:321个52,542个72,74,763个…………………)12(n2,)12(n4,)12(n6,…,)12(n)22(n)1(n个(6)逆序数为)1(nn321个52,542个…………………)12(n2,)12(n4,)12(n6,…,)12(n)22(n)1(n个421个62,642个…………………)2(n2,)2(n4,)2(n6,…,)2(n)22(n)1(n个3.写出四阶行列式中含有因子2311aa的项.解由定义知,四阶行列式的一般项为43214321)1(pppptaaaa,其中t为4321pppp的逆序数.由于3,121pp已固定,4321pppp只能形如13□□,即1324或1342.对应的t分别为10100或2200044322311aaaa和42342311aaaa为所求.4.计算下列各行列式:(1)71100251020214214;(2)2605232112131412;(3)efcfbfdecdbdaeacab;(4)dcba100110011001解3(1)7110025102021421434327cccc0100142310202110214=34)1(143102211014=143102211014321132cccc1417172001099=0(2)260523211213141224cc260503212213041224rr041203212213041214rr0000032122130412=0(3)efcfbfdecdbdaeacab=ecbecbecbadf=111111111adfbce=abcdef4(4)dcba10011001100121arrdcbaab100110011010=12)1)(1(dcaab10110123dcc010111cdcadaab4=23)1)(1(cdadab111=1adcdababcd5.证明:(1)1112222bbaababa=3)(ba;(2)bzaybyaxbxazbyaxbxazbzaybxazbzaybyax=yxzxzyzyxba)(33;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222ddddccccbbbbaaaa;(4)444422221111dcbadcbadcba))()()()((dbcbdacaba))((dcbadc;(5)1221100000100001axaaaaxxxnnnnnnnaxaxax111.证明(1)00122222221312ababaabaabacccc左边abababaab22)1(2221321))((abaabab右边3)(ba5(2)bzaybyaxzbyaxbxazybxazbzayxa分开按第一列左边bzaybyaxxbyaxbxazzbxazbzayyb002ybyaxzxbxazyzbzayxa分别再分bzayyxbyaxxzbxazzybzyxyxzxzybyxzxzyzyxa33分别再分右边233)1(yxzxzyzyxbyxzxzyzyxa(3)2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(dddddcccccbbbbbaaaaa左边9644129644129644129644122222141312ddddccccbbbbaaaacccccc964496449644964422222ddddccccbbbbaaaa分成二项按第二列964419644196441964412222dddcccbbbaaa949494949464222224232423ddccbbaacccccccc第二项第一项06416416416412222dddcccbbbaaa(4)444444422222220001adacabaadacabaadacaba左边6=)()()(222222222222222addaccabbadacabadacab=)()()(111))()((222addaccabbadacabadacab=))()((adacab)()()()()(00122222abbaddabbaccabbbdbcab=))()()()((bdbcadacab)()()()(112222bdabbddbcabbcc=))()()()((dbcbdacaba))((dcbadc(5)用数学归纳法证明.,1,2212122命题成立时当axaxaxaxDn假设对于)1(n阶行列式命题成立,即,122111nnnnnaxaxaxD:1列展开按第则nD1110010001)1(11xxaxDDnnnn右边nnaxD1所以,对于n阶行列式命题成立.6.设n阶行列式)det(ijaD,把D上下翻转、或逆时针旋转90、或依副对角线翻转,依次得nnnnaaaaD11111,11112nnnnaaaaD,11113aaaaDnnnn,证明DDDDDnn32)1(21,)1(.证明)det(ijaD7nnnnnnnnnnaaaaaaaaaaD2211111111111)1(nnnnnnnnaaaaaaaa331122111121)1()1(nnnnnnaaaa111121)1()1()1(DDnnnn2)1()1()2(21)1()1(同理可证nnnnnnaaaaD11112)1(2)1(DDnnTnn2)1(2)1()1()1(DDDDDnnnnnnnn)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为kDk):(1)aaDn11,其中对角线上元素都是a,未写出的元素都是0;(2)xaaaxaaaxDn;(3)1111)()1()()1(1111naaanaaanaaaDnnnnnnn;提示:利用范德蒙德行列式的结果.8(4)nnnnndcdcbabaD000011112;(5)jiaaDijijn其中),det(;(6)nnaaaD11111111121,021naaa其中.解(1)aaaaaDn00010000000000001000按最后一行展开)1()1(100000000000010000)1(nnnaaa)1)(1(2)1(nnnaaa(再按第一行展开)nnnnnaaa)2)(2(1)1()1(2nnaa)1(22aan(2)将第一行乘)1(分别加到其余各行,得9axxaaxxaaxxaaaaxDn0000000再将各列都加到第一列上,得axaxaxaaaanxDn0000000000)1()(])1([1axanxn(3)从第1n行开始,第1n行经过n次相邻对换,换到第1行,第n行经)1(n次对换换到第2行…,经2)1(1)1(nnnn次行交换,得nnnnnnnnnnaaanaaanaaaD)()1()()1(1111)1(1112)1(1此行列式为范德蒙德行列式112)1(1)]1()1[()1(jinnnnjaiaD1121)1(2)1(112)1()][()1()1()]([)1(jinnnnnjinnnjiji11)(jinji10(4)nnnnndcdcbabaD00011112nnnnnnddcdcbabaa0000000011111111展开按第一行000000)1(1111111112cdcdcbababnnnnnnn2222nnnnnnDcbDda都按最后一行展开由此得递推公式:222)(nnnnnnDcbdaD即niiiiinDcbdaD222)(而111111112cbdadcbaD得niiiiincbdaD12)((5)jiaij110432140123310122210113210)det(nnnnnnnnaDijn,3221rrrr0432111111111111111111111nnnn,,141312cccccc1524232102221002210002100001nnnnn=212)1()1(nnn(6)nnaaaD11111111121,,433221ccccccnnnnaaaaaaaaaa10000100010000100010001000011433221展开(由下往上)按最后一列12))(1(121nnaaaannnaaaaaaaaa00000000000000000000000000022433221nnnaaaaaaaa00000000000000000113

1 / 69
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功