Convex Piecewise-Linear Fitting

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ConvexPiecewise-LinearFittingAlessandroMagnaniStephenP.BoydyElectricalEngineeringDepartmentStanfordUniversityStanfordCA94305April13,2006AbstractWeconsidertheproblemof ttingaconvexpiecewise-linearfunction,withsomespeci edform,togivenmulti-dimensionaldata.Exceptforafewspecialcases,thisproblemishardtosolveexactly,sowefocusonheuristicmethodsthat ndlocallyoptimal ts.Themethodwedescribe,whichisavariationontheK-meansalgorithmforclustering,seemstoworkwellinpractice,atleastondatathatcanbe twellbyaconvexfunction.Wefocusonthesimplestfunctionform,amaximumofa xednumberofanefunctions,andthenshowhowthemethodsextendtoamoregeneralform.alem@stanford.eduyboyd@stanford.edu11Convexpiecewise-linear ttingproblemWeconsidertheproblemof ttingsomegivendata(u1;y1);:::;(um;ym)2RnRwithaconvexpiecewise-linearfunctionf:Rn!RfromsomesetFofcandidatefunctions.Withaleast-squares ttingcriterion,weobtaintheproblemminimizeJ(f)=Pmi=1(f(ui)yi)2subjecttof2F;(1)withvariablef.Wereferto(J(f)=m)1=2astheRMS(root-mean-square) tofthefunctionftothedata.Theconvexpiecewise-linear ttingproblem(1)isto ndthefunctionf,fromthegivenfamilyFofconvexpiecewise-linearfunctions,thatgivesthebest(smallest)RMS ttothegivendata.Ourmaininterestisinthecasewhenn(thedimensionofthedata)isrelativelysmall,saynotmorethan5orso,whilem(thenumberofdatapoints)canberelativelylarge,e.g.,104ormore.Themethodswedescribe,however,workforanyvaluesofnandm.Severalspecialcasesoftheconvexpiecewise-linear ttingproblem(1)canbesolvedexactly.WhenFconsistsoftheanefunctions,i.e.,fhastheformf(x)=aTx+b,theproblem(1)reducestoanordinarylinearleast-squaresprobleminthefunctionparametersa2Rnandb2Randsoisreadilysolved.Asalesstrivialexample,considerthecasewhenFconsistsofallpiecewise-linearfunctionsfromRnintoR,withnootherconstraintontheformoff.Thisisthenonparametricconvexpiecewise-linear ttingproblem.Thentheproblem(1)canbesolved,exactly,viaaquadraticprogram(QP);see[BV04,x6.5.5].Thisnonparametricapproach,however,hastwopotentialpracticaldisadvantages.First,theQPthatmustbesolvedisverylarge(containingmorethanmnvariables),limitingthemethodtomodestvaluesofm(say,athousand).Thesecondpotentialdisadvantageisthatthepiecewise-linearfunction tobtainedcanbeverycomplex,withmanyterms(uptom).Ofcourse,notalldatacanbe twell(i.e.,withsmallRMS t)withaconvexpiecewise-linearfunction.Forexample,ifthedataaresamplesfromafunctionthathasstrongnegative(concave)curvature,thennoconvexfunctioncan titwell.Moreover,thebest t(whichwillbepoor)willbeobtainedwithananefunction.Wecanalsohavetheoppositesituation:itcanoccurthatthedatacanbeperfectly tbyananefunction,i.e.,wecanhaveJ=0.Inthiscasewesaythatthedataisinterpolatedbytheconvexpiecewise-linearfunctionf.1.1Max-anefunctionsInthispaperweconsidertheparametric ttingproblem,inwhichthecandidatefunctionsareparametrizedbya nite-dimensionalvectorofcoecients 2Rp.OneverysimpleformisgivenbyFkma,thesetoffunctionsonRnwiththeformf(x)=maxfaT1x+b1;:::;aTkx+bkg;(2)2i.e.,amaximumofkanefunctions.Werefertoafunctionofthisformas`max-ane',withkterms.ThesetFkmaisparametrizedbythecoecientvector =(a1;:::;ak;b1;:::;bk)2Rk(n+1):Infact,anyconvexpiecewise-linearfunctiononRncanbeexpressedasamax-anefunction,forsomek,sothisformisinasenseuniversal.Ourinterest,however,isinthecasewhenthenumberoftermskisrelativelysmall,saynomorethan10,orafew10s.Inthiscasethemax-anerepresentation(2)iscompact,inthesensethatthenumberofparametersneededtodescribef(i.e.,p)ismuchsmallerthanthenumberofparametersintheoriginaldataset(i.e.,m(n+1)).Themethodswedescribe,however,donotrequirektobesmall.WhenF=Fkma,the ttingproblem(1)reducestothenonlinearleast-squaresproblemminimizeJ( )=mXi=1maxj=1;:::;k(aTjui+bj)yi2;(3)withvariablesa1;:::;ak2Rn,b1;:::;bk2R.ThefunctionJisapiecewise-quadraticfunctionof .Indeed,foreachi,f(ui)yiispiecewise-linear,andJisthesumofsquaresofthesefunctions,soJisconvexquadraticonthe(polyhedral)regionsonwhichf(ui)isane.ButJisnotgloballyconvex,sothe ttingproblem(3)isnotconvex.1.2AmoregeneralparametrizationWewillalsoconsideramoregeneralparametrizedformforconvexpiecewise-linearfunctions,f(x)=((x; ));(4)where:Rq!Risa( xed)convexpiecewise-linearfunction,and:RnRp!Rqisa( xed)bi-anefunction.(Thismeansthatforeachx,(x; )isananefunctionof ,andforeach ,(x; )isananefunctionofx.)Thesimplemax-aneparametrization(2)hasthisform,withq=k,(z1;:::;zk)=maxfz1;:::;zkg,andi(x; )=aTix+bi.Asanexample,considerthesetoffunctionsFthataresumsofkterms,eachofwhichisthemaximumoftwoanefunctions,f(x)=kXi=1maxfaTix+bi;cTix+dig;(5)parametrizedbya1;:::;ak;c1;:::;ck2Rnandb1;:::;bk;d1;:::;dk2R.Thisfamilycorrespondstothegeneralform(4)with(z1;:::;zk;w1;:::;wk)=kXi=1maxfzi;wig;and(x; )=(aT1x+b1;:::;aTkx+bk;cT1x+d1;:::;cTkx+dk):3Ofcoursewecanexpandanyfunctionwiththemoregeneralform(4)intoitsmax-anerepresentation.Buttheresultingmax-anerepresentationcanbeverymuchlargerthantheoriginalgeneralformrepresentation.Forexample,thefunctionform(5)requiresp=2k(n+1)parameters.Ifthesamefunctioniswrittenoutasamax-anefunction,itrequires2kterms,andtherefore2k(n+1)parameters.Theho

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功