任意角的三角函数课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1、在初中我们是如何定义锐角三角函数的?sincostancacbba复习回顾OabMPc1.2.1任意角的三角函数OabMPyx2.在直角坐标系中如何用坐标表示锐角三角函数?新课导入22:barOPbMPaOM其中yx2.在直角坐标系中如何用坐标表示锐角三角函数?raOPOMcosrbOPMPsinabOMMPtan新课导入﹒baP,﹒Mo如果改变点P在终边上的位置,这三个比值会改变吗?﹒PMOPMPsinOPOMcosOMMPtanOMP∽PMOPOPMPOOMMOPM诱思探究MOyxP(a,b)OPMPsinOPOMcosOMMPtan,则若1rOPbaab3.锐角三角函数(在单位圆中)以原点O为圆心,以单位长度为半径的圆,称为单位圆.yoP),(bax1M4.任意角的三角函数定义设是一个任意角,它的终边与单位圆交于点),(yxP那么:(1)叫做的正弦,记作,即;ysinysin(2)叫做的余弦,记作,即;cosxxcos(3)叫做的正切,记作,即。xytanxytan所以,正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将他们称为三角函数.0,1AOyxyxP,﹒)0(x使比值有意义的角的集合即为三角函数的定义域.)0,1(AxyoP),(yx的终边说明(1)正弦就是交点的纵坐标,余弦就是交点横坐标的比值.的横坐标,正切就是交点的纵坐标与.(2)正弦、余弦总有意义.当的终边在y横坐标等于0,xytan无意义,此时)(2zkk轴上时,点P的(3)由于角的集合与实数集之间可以建立一一对应关系,三角函数可以看成是自变量为实数的函数.任意角的三角函数的定义过程:直角三角形中定义锐角三角函数abrarbtan,cos,sin直角坐标系中定义锐角三角函数abrarbtan,cos,sin单位圆中定义锐角三角函数ababtan,cos,sin单位圆中定义任意角的三角函数,sinyxcosxytan,例1求的正弦、余弦和正切值.3535AOB解:在直角坐标系中,作AOB,易知的终边与单位圆的交点坐标为)23,21(所以2335sin2135cos335tan思考:若把角改为呢?3567,2167sin,,,2367cos3367tan实例剖析xyo﹒﹒AB35例2已知角的终边经过点,求角的正弦、余弦和正切值.)4,3(0P5)4()3(220OP解:由已知可得设角的终边与单位圆交于,),(yxP分别过点、作轴的垂线、0PMPP00PMx\400PM于是,;54||1sin000OPPMOPMPyyyMP30OMxOMOMP∽00POM;531cos00OPOMOPOMxx34cossintanxy4,30P0MOyxMyxP,设角是一个任意角,是终边上的任意一点,点与原点的距离),(yxP022yxrP那么①叫做的正弦,即ryrysin②叫做的余弦,即rxrxcos③叫做的正切,即xy0tanxxy任意角的三角函数值仅与有关,而与点在角的终边上的位置无关.P定义推广:135122222yxr1312cosrx125tanxy135sinry于是,巩固提高练习1、已知角的终边过点,求的三个三角函数值.5,12P解:由已知可得:2P15,8aa、已知角的终边上一点aR且a0,sin,cos,tan求角的的值.-15,8,xaya解:由于22158170raaaa所以1017,ara若则于是88151588sin,cos,tan171717171515aaaaaa20-17,ara若则于是88151588sin,cos,tan171717171515aaaaaa32sin,cos,tan.yx、已知角的终边在直线上,求角的的值1解:当角的终边在第一象限时,221,2125在角的终边上取点,则r=225152sin,cos,tan2551552当角的终边在第三象限时,221,2125r在角的终边上取点,则225152sin,cos,tan2551551.根据三角函数的定义,确定它们的定义域(弧度制)探究三角函数定义域sincostanR)(2Zkk2.确定三角函数值在各象限的符号yxosinyxocosyxotan+()()()()()()()()()()()R+--+--++-+-例3求证:当且仅当下列不等式组成立时,角为第三象限角.0tan0sin①②证明:因为①式成立,所以角的终边可能位于第三或第四象限,也可能位于y轴的非正半轴上;0sin又因为②式成立,所以角的终边可能位于第一或第三象限.0tan因为①②式都成立,所以角的终边只能位于第三象限.于是角为第三象限角.反过来请同学们自己证明.如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?终边相同的角的同一三角函数值相等(公式一)tan)2tan(cos)2cos(sin)2sin(kkk其中zk利用公式一,可以把求任意角的三角函数值,转化为求角的三角函数值.360020到或到?例4确定下列三角函数值的符号:(1)(2)(3)解:250cos)672tan(4sin(1)因为是第三象限角,所以;2500250cos(2)因为=,而是第一象限角,所以;)672tan(48tan)360248tan(0)672tan(48练习确定下列三角函数值的符号516cos)34sin()817tan((3)因为是第四象限角,所以.404sin例5求下列三角函数值:(1)(2)49cos)611tan(解:(1)224cos)24cos(49cos练习求下列三角函数值319tan)431tan(31336tan6tan)26tan()611tan((2)117119cossintan363练习:求值117119cossintan363解:cos4sin12tan6363cossintan36311313221.内容总结:①三角函数的概念.②三角函数的定义域及三角函数值在各象限的符号.③诱导公式一.运用了定义法、公式法、数形结合法解题.划归的思想,数形结合的思想.归纳总结2.方法总结:3.体现的数学思想:作业:课本第20页习题1.2A组1、2、6、7、第9题的(1)(3)题.

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功