邵阳学院课程设计(论文)1第1章绪论1.1DSP芯片简介DSP芯片是一种特别适合数字信号处理运算的微处理器,主要用来实时、快速地实现各种数字信号处理算法。数字信号处理由于具有精度高、灵活性强等优点,已广泛应用于图像处理、数字通信、雷达等领域。数字滤波技术在数字信号处理中占有极其重要的地位,数字滤波器根据其单位脉冲响应可分为IIR(无限长冲激响应滤波器)和FIR(有限长冲激响应滤波器)两类。IIR滤波器可以用较少的阶数获得很高的选择特性,但在有限精度的运算中,可能出现不稳定现象,而且相位特性不好控制。数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。数字滤波器又分为无限冲激响应滤波器(IIR)和有限冲激响应滤波器(FIR)。FIR滤波器具有不含反馈环路、结构简单以及可以实现的严格线性相位等优点,因而在对相位要求比较严格的条件下,采用FIR数字滤波器。同时,由于在许多场合下,需要对信号进行实时处理,因而对于单片机的性能要求也越来越高。由于DSP控制器具有许多独特的结构,例如采用多组总线结构实现并行处理,独立的累加器和乘法器以及丰富的寻址方式,采用DSP控制器就可以提高数字信号处理运算的能力,可以对数字信号做到实时处理。DSP(数字信号处理器)与一般的微处理器相比有很大的区别,它所特有的系统结构、指令集合、数据流程方式为解决复杂的数字信号处理问题提供了便利,本文选用TMS320C5509作为DSP处理芯片,通过对其编程来实现IIR滤波器。对数字滤波器而言,从实现方法上,有FIR滤波器和无限冲激响应(IIR)滤波器之分。由于FIR滤波器只有零点,因此这一类系统不像IIR系统那样易取得比较好的通带与阻带衰减特性。但是IIR系统与传统的通过硬件电路实现的模拟滤波器相比有以下优点:1、单位冲击响应有无限多项;2、高效率(因为结构简单、系数小、乘法操作较少)3、与模拟滤波器有对应关系4、可以解析控制,强制系统在指定位置为零点5、有极点,在设计时要考虑稳定性6、具有反馈,可能产生噪声、误差累积邵阳学院课程设计(论文)21.2数字滤波器的介绍数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性:,其中、分别是数字滤波器的输出序列和输入序列的频域特性(或称为频谱特性),是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。输入序列的频谱经过滤波后,因此,只要按照输入信号频谱的特点和处理信号的目的,适当选择,使得滤波后的满足设计的要求,这就是数字滤波器的滤波原理。数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)数字滤波器和有限长冲激响应(FIR)数字滤波器。IIR数字滤波器的特征是,具有无限持续时间冲激响应,需要用递归模型设计IIR滤波器的任务就是寻求一个物理上可实现的系统函数H(z),使其频率响应H(z)满足所希望得到的频域指标,即符合给定的通带截止频率、阻带截止频率、通带衰减系数和阻带衰减系数。1.3IIR数字滤波器的设计方法及原理IIR数字滤波器是一种离散时间系统,其系统函数为假设M≤N,当M>N时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。IIR数字滤波器的设计实际上是求解滤波器的系数和,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。1.用脉冲相应不变法设计IIR数字滤波器利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应邵阳学院课程设计(论文)3ha(t),即将ha(t)进行等间隔采样,使h(n)正好等于ha(t)的采样值,满足h(n)=ha(nT)式中,T是采样周期。如果令Ha(s)是ha(t)的拉普拉斯变换,H(z)为h(n)的Z变换,利用采样序列的Z变换与模拟信号的拉普拉斯变换的关系得(1-1)则可看出,脉冲响应不变法将模拟滤波器的S平面变换成数字滤波器的Z平面,这个从s到z的变换z=esT是从S平面变换到Z平面的标准变换关系式。图1-1脉冲响应不变法的映射关系由(1-1)式,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为(1-2)这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即(1-3)才能使数字滤波器的频率响应在折叠频率以内重现模拟滤波器的频率响应,而不产生混叠失真,即|ω|π(1-4)但是,任何一个实际的模拟滤波器频率响应都不是严格限带的,变换后就会产生周期延拓分量的频谱交叠,即产生频率响应的混叠失真,如图7-4所示。这时数字滤波器的频响就不同于原模拟滤波器的频响,而带有一定的失真。当模拟滤波器的频率响应在折叠频率以上处衰减越大、越快时,变换后频率响应混叠失真就越小。这时,采用脉冲响应不变法设计的数字滤波器才能得到良好的效果。kTjsXTjksXTzXkaskaezsT21)(1)(j3/T/T-3/T-/Too-11jIm[z]Re[z]Z平面S平面TkjHTeHkaj21)(2||sT0)(jHaTjHTeHaj1)(邵阳学院课程设计(论文)4图1-2脉冲响应不变法中的频响混叠现象对某一模拟滤波器的单位冲激响应ha(t)进行采样,采样频率为fs,若使fs增加,即令采样时间间隔(T=1/fs)减小,则系统频率响应各周期延拓分量之间相距更远,因而可减小频率响应的混叠效应。脉冲响应不变法优缺点:从以上讨论可以看出,脉冲响应不变法使得数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应,也就是时域逼近良好,而且模拟频率Ω和数字频率ω之间呈线性关系ω=ΩT。因而,一个线性相位的模拟滤波器(例如贝塞尔滤波器)通过脉冲响应不变法得到的仍然是一个线性相位的数字滤波器。脉冲响应不变法的最大缺点是有频率响应的混叠效应。所以,脉冲响应不变法只适用于限带的模拟滤波器(例如,衰减特性很好的低通或带通滤波器),而且高频衰减越快,混叠效应越小。至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中。如果要对高通和带阻滤波器采用脉冲响应不变法,就必须先对高通和带阻滤波器加一保护滤波器,滤掉高于折叠频率以上的频率,然后再使用脉冲响应不变法转换为数字滤波器。当然这样会进一步增加设计复杂性和滤波器的阶数。2.用双线性变换法设计IIR数字滤波器脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T~π/T之间,再用z=esT转换到Z平面上。也就是说,第一步先将整个S平面压缩映射到S1平面的-π/T~π/T一条横带里;第二步再通过标准变换关系z=es1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换-3-2……)j(aΩHoo-23=T)(ejHTπ2TπTπTπ2-邵阳学院课程设计(论文)5性,也就消除了频谱混叠现象,映射关系如图1-3所示。图1-3双线性变换的映射关系为了将S平面的整个虚轴jΩ压缩到S1平面jΩ1轴上的-π/T到π/T段上,可以通过以下的正切变换实现(1-5)式中,T仍是采样间隔。当Ω1由-π/T经过0变化到π/T时,Ω由-∞经过0变化到+∞,也即映射了整个jΩ轴。将式(1-5)写成将此关系解析延拓到整个S平面和S1平面,令jΩ=s,jΩ1=s1,则得再将S1平面通过以下标准变换关系映射到Z平面z=es1T从而得到S平面和Z平面的单值映射关系为:(1-6)(1-7)式(1-6)与式(1-7)是S平面与Z平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换式(1-5)与式(1-6)的双线性变换符合映射变换应满足的两点要求。o-11Z平面jIm[z]Re[z]/Tj11-/TS1平面S平面joo2tan21TT2/2/2/2/11112TjTjTjTjeeeeTjTsTsTsTsTsTseeTTsTeeeeTs1111111122tanh2212/2/2/2/11112zzTssTsTsTsTz222121邵阳学院课程设计(论文)6首先,把z=ejω,可得(1-8)即S平面的虚轴映射到Z平面的单位圆。其次,将s=σ+jΩ代入式(1-8),得因此由此看出,当σ0时,|z|1;当σ0时,|z|1。也就是说,S平面的左半平面映射到Z平面的单位圆内,S平面的右半平面映射到Z平面的单位圆外,S平面的虚轴映射到Z平面的单位圆上。因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的。双线性变换法优缺点:双线性变换法与脉冲响应不变法相比,其主要的优点是避免了频率响应的混叠现象。这是因为S平面与Z平面是单值的一一对应关系。S平面整个jΩ轴单值地对应于Z平面单位圆一周,即频率轴是单值变换关系。这个关系如式(1-8)所示,重写如下:上式表明,S平面上Ω与Z平面的ω成非线性的正切关系,如图7-7所示。由图7-7看出,在零频率附近,模拟角频率Ω与数字频率ω之间的变换关系接近于线性关系;但当Ω进一步增加时,ω增长得越来越慢,最后当Ω→∞时,ω终止在折叠频率ω=π处,因而双线性变换就不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,从而消除了频率混叠现象。jTjeeTsjj2tan2112jTjTz22222222||TTz2tan2T邵阳学院课程设计(论文)7图1-4双线性变换法的频率变换关系但是双线性变换的这个特点是靠频率的严重非线性关系而得到的,如式(1-8)及图1-4所示。由于这种频率之间的非线性变换关系,就产生了新的问题。首先,一个线性相位的模拟滤波器经双线性变换后得到非线性相位的数字滤波器,不再保持原有的线性相位了;其次,这种非线性关系要求模拟滤波器的幅频响应必须是分段常数型的,即某一频率段的幅频响应近似等于某一常数(这正是一般典型的低通、高通、带通、带阻型滤波器的响应特性),不然变换所产生的数字滤波器幅频响应相对于原模拟滤波器的幅频响应会有畸变,如图1-5所示。图1-5双线性变换法幅度和相位特性的非线性映射对于分段常数的滤波器,双线性变换后,仍得到幅频特性为分段常数的滤波器,但是各个分段边缘的临界频率点产生了畸变,这种频率的畸变,可以通过频率的预畸来加以校正。也就是将临界模拟频率事先加以畸变,然后经变换后正好映射到所需要的数字频率上。-o2tan2T=ooo)j(aΩH)(ejHooo)](earg[jH)]j(arg[aΩH邵阳学院课程设计(论文)8第2章IIR滤波器的实现方法及算法原理2.1IIR滤波器的实现方法目前数字滤波器的主要实现方法有:1.在通用的微型计算机上用软件实现。软件可以是自己编写的,也可以使用现成的软件包,这种方法的缺点是速度太慢,不能用于实时系统,只能用于教学和算法的仿真研究。比如用MAT