March2005多元函数的复合情况要复杂一些大体上可以分为三类:(1)多元函数与多元函数的复合;(2)多元函数与一元函数的复合;(3)一元函数与多元函数的复合。详见《学习手册》215页,8.4.1节216页,表8.4.1March2005多元复合函数的求导法则:链式法则(,)zfuv(,)(,)uxyvxy[(,),(,)]zfxyxy(,)zxyzxTheChainRule一、多元函数与多元函数的复合zvvxzuuxzyzuuyzvvy链式法则多元套多元March2005zu沿线相乘分线相加zuuyzvvyzxzvvxzuuxzy先串联再并联zvuxuyvxvy(,)zfuv(,)(,)uxyvxy《学习手册》216页表8.4.1March2005证[(,),(,)]zfxyxy(,)zxyxxxyyx(,)(,)uxxyxy(,)(,)vxxyxy,uv(,)(,)zfuuvvfuv(,)(,)()uvfuvufuvvo由可微性22(where()())uv偏增量March2005(,)(,)()uvzfuvufuvvozx0limxzx0(,)(,)()limuvxfuvufuvvox0()lim[(,)(,)]uvxuvofuvfuvxxxMarch2005()lim[(,)(,)]uvxzuvofuvfuvxxxx000()(,)lim(,)limlimuvxxxzuvofuvfuvxxxx(,)(,)0uvuvfuvfuvxx(,)(,)uvuvfuvfuvxx下页解释March2005()limxox0()limxox220()()()limxvvox220()lim()()xouvxx220()lim()()xouvxx0其中March2005(,)zfxy()()xtyt[(),()]zftt()ztdzdt二、多元函数与一元函数的复合zdyydtzdxxdt全导数多元套一元March2005zxzydxdtdydt沿线相乘分线相加先串联再并联dzdtzdyydtzdxxdt全导数(,)zfxy()()xtyt《学习手册》216页表8.4.1March2005()zfu(,)uxy[(,)]zfxy(,)zxy三、一元函数与多元函数的复合zxdzuduxzydzuduy()ufux()ufuy一元套多元March2005dzuduxzydzuduyfzuxydzduuyux沿线相乘March2005,P312ln,zuv,xuy32vxyFindandzzxy解zxzvvxzuux12lnuvy23uv12ln(32)xxyyy2()332xyxy22ln(32)xxyy223(32)xyxyMarch2005,xuy32vxyzyzvvyzuuy22ln()xuvy2(2)uv22ln(32)()xxxyyy2()(2)32xyxy232ln(32)xxyy222(32)xyxyMarch2005,xuy32vxy另解先复合,再求导2lnzuv2()ln(32)xxyy22ln(32)xxyyzx2213[2ln(32)]32xxxyyxyzy22211[ln(32)]32xxyyyxy具体的函数不妨先复合再求导March2005cos,xtsinytFinddzdt解dzdtzdyydtzdxxdt()xyyee()xyexecossin(sin)(sin)ttteetcossin(cos)costtetetcos2sin2(cossin)(cossin)ttettett(sin)tcost全导数March2005cos,xtsinyt另解先复合,再求导xyzyexecossinsincostttetedzdtcossin(sincos)tttetecoscos(cossin(sin))tttetetcossin(sincoscos)tttetetcos2sin2(cossin)(cossin)ttettettMarch2005(1)yxyxy(1)ln(1)yxyxyzy另解用对数求导法,直接计算(1)yzxylnln(1)yzxylnln(1)zyxy1zzyln(1)xyzy(1)[ln(1)]1yxyxyxyxy1xyxyMarch2005(,)zfxyxyFindandzzxy解zxzvvxzuux先分解(,)zfuv22uxyvxyzuzv2zxuzyv(2)xuvzxfyf或抽象函数的偏导数2xyMarch2005(,)zfxyxyzyzvvyzuuy(,)zfuv22uxyvxyzuzv2zyuzxv(2)yuvzyfxf或(2)yxMarch2005(,)zfxyxy另解zx2()xfxy不分解221()xfxy12xf2yfzy2()yfxy221()yfxy12yf2xf2xuvzxfyf2yuvzyfxfMarch2005(,)zfxyxy2Findzxy解zx已经求得:12xf2yf2zxy()zyx12(2)xfyfy1(2)xfy2()yfy12()xfy2f2()yfyMarch2005()zxfxyy22()fyfy注意:2211(,)ffxyxy2222(,)ffxyxy22zxxy2fy11122(2)xyfxf2f22xyf114xyf22122()xyf2f2122(2)yyfxf1221ff2211[()yfxy12()]yfxy2221[()yfxy22()]yfxyMarch2005抽象复合函数的二阶偏导数(自学)注意:(,)iiffxyzxyz见《学习手册》217页,8.4.2节:多元复合函数的二阶偏导数March2005多元复合函数的全微分全微分的形式不变性全微分的形式:zzdzdxdyxyx和y是自变量(,)zfxyMarch2005[(,),(,)]zfxyxy(,)zxy(,)zfuv(,)uxy(,)vxyzzdzdxdyxy()zuzvdxuxvx()zuzvdyuyvy()zuudxdyuxy()zvvdxdyvxyzduuzdvvMarch2005zdvv全微分形式不变zzdzdydyxyx和y是自变量March2005Find,,anduuuduxyz解222lndudxyz2221ln()2dxyz222112xyz222()dxyz222112xyz(222)xdxydyzdz222xdxydyzdzxyzMarch2005222uxxxyz222uyyxyz222uzzxyz222lnuxyzMarch2005=u(x,y),u具有二阶连续偏导数试用极坐标表示偏微分方程:22()()0uuxycosxsiny分析要求将和用和表示uxuyuu新表旧March2005uuxxuyy把x,y视为中间变量cosuxsinuy