电力系统电压稳定分析与研究

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1武汉大学本科毕业论文电力系统电压稳定分析与研究院(系)名称:武汉大学专业名称:发电厂及电力系统学生姓名:杨帆指导教师:江波教授2摘要电力系统是一个具有高度非线性的复杂系统,随着电力工业发展和商业化运营,电网规模不断扩大,对电力系统稳定性要求也越来越高。在现代大型电力系统中,电压不稳定/电压崩溃事故已成为电力系统丧失稳定性的一个重要方面。因此,对电压稳定性问题进行深入研究,仍然是电力系统工作者面临的一项重要任务。关键词:电力系统电压稳定电压崩溃3目录1.前言1.1电压稳定性及其类型1.2电压稳定的研究内容1.3电压稳定的研究展望2.现今对于电压崩溃机理的认识2.1短期电压失稳2.2长期电压失稳2.3由长期动态造成的短期不稳定性3.电压稳定性的分析方法3.1灵敏度分析方法3.2最大功率法3.3Q-U法4电压稳定的研究方法4.1静态分析方法4.1.1灵敏度分析法4.1.2特征值分析法、模态分析法和奇异值分解法4.1.3连续潮流法4.1.4非线性规划法4.1.5零特征根法44.2动态分析方法4.2.1小干扰分析法4.2.2大干扰分析法4.2.3非线性动力学方法4.2.4电压稳定的概率分析4.电压稳定研究的进一步发展5.结语51前言上个世纪七十年代后期以来,世界范围内先后发生了多起由电压崩溃引起的大面积停电事故,造成了巨大的经济损失和严重的社会影响。我国虽然还没有发生过大范围的恶性电压崩溃事故,但电压失稳引起的局部停电事故却时有发生,例如1972年7月27日湖北电网、1973年7月12日大连电网等。这些事故的发生使人们对长期被忽视的电压稳定问题投以极大的关注,认识到了电压稳定性的研究对确保电力系统安全可靠的运行具有重要意义。由此,电压稳定的研究开始逐渐进入电力工业界和学术界的视野,研究成果不断涌现。近年来,随着电力工业的发展,电力系统规模日益扩大,逐步进入高电压、大机组、大电网时代,同时伴随电力改革和电力市场的实践,长线路、重负荷及无功储备不足的特征逐渐突出,系统的电压安全裕度倾向于越来越小,使电力系统常常运行在稳定的边界;而目前系统运行操作人员并不能准确掌握系统的电压安全状态。所以事故发生时,缺乏足够的安全信息来采取相应的措施,导致了事故的扩大。目前,电力系统中电压稳定问题趋于严重的原因主要有以下4点:①由于环境保护以及经济上的考虑,输电设施使用的强度日益接近其极限值;发、②并联电容无功补偿增加了,这种补偿在电压降低时,向系统供出的无功按电压平方下降;③长期以来人们只注意了功角稳定性的研究,并围绕功角稳定的改善采取了许多措施,而一定程度上忽视了电压稳定性的问题;④随着电力市场化的进程,各个有独立的经济利益的发电商以及电网运营商很难象以前垂直管理模式下那样统一的为维护系统安全稳定性做出努力。在我国电压不稳定和电压崩溃出现的条件同样存在,首先我国电网更薄弱,并联电容器的使用更甚,再加之城市中家用电器设备的巨增,我国更有可能出现电压不稳定问题。目6前国内电压稳定问题“暴露的不突出”,原因之一可能是由于大多数有裁调压变压器分接头(OLTC)末投人自动以及电力部门采用甩负荷的措施,而后一措施应该是防止电压不稳定问题的最后一道防线,不应过早地或过分地使用。将来电力市场化之后,甩负荷的使用将受到更大的限制。因此在我国应加紧电压稳定问题的研究。1.1电压稳定性及其类型电力系统的稳定性是在远距离输送大功率负荷情况下突出的问题。在初期的电力系统中,输电线路距离较短,负荷较小,显然稳定问题不是很重要的问题。而目前,在我国的电力网越来越大,输送距离越来越长,输送容量越来越大,电压等级越来越高。在这样的电力系统中,主要靠广大工程技术人员(用户)提供可靠而不间断的电力,保证电力系统运行的安全、可靠、优质,稳定性问题显得十分重要。电力系统稳定性的破坏,是危害很严重的事故,会造成大面积停电,给国民经济带来不可估量的损失,这种后果促使人民严重关注电力系统的稳定问题。可以说现代电力系统的很多方面都与稳定性问题密切相关的。所谓电力系统的稳定性,是指当系统在某种正常运行状态下突然受到某种干扰时,能否经过一定的时间后又恢复到原来的稳定运行状态或者过渡到一个新的稳定运行状态的能力。如果能够,则认为系统在该正常运行方式下是稳定的。反之,若系统不能回到原来的运行状态,也不能建立一个新的稳定运行状态,则说明系统的状态变量(电流、电压、功率)没有一个稳定值,而是随着时间不断增大或者振荡,系统是不稳定的。知道电网甩去相当大的一部分负荷,甚至是系统瓦解成几个部分为止,这种稳定性的丧失带来的后果极为严重。电力系统的稳定性,按系统遭受到大小不同的干扰情况,可分为静态稳定性和暂态稳定性。电力系统的静态稳定性,是指系统在某种正常运行状态下,突然受到某种小干扰后,能够自动恢复到原来的运行状态的能力。实际上电力系统中任意小的干7扰是随时都存在的,例如,某个用户需要增减一点负荷,风雨造成的摇摆,系统末端的小操作,调速器、励磁调节器工作点变化等。在小干扰作用下,系统中各状态变量变化很小。电力系统的暂态稳定性,是指系统在某种正常运行状态下,突然受到某种较大的干扰后,能够自动过渡到一个新的稳定运行状态的能力。可见,电力系统的暂态稳定性即是大干扰下的稳定性。系统运行中的大干扰包括正常操作和故障情况引起的。正常操作如大负荷的投入或切除,大容量发电机、变压器及高压输电线路的投入或切除,都可能对系统产生一个较大的扰动。故障情况如系统中发生各种形式的短路、断路,这对系统的扰动极为严重。电力系统受到较大扰动时,系统中的运行参数(电压、电流和功率)都将发生急剧的、不同程度的变化。由于电源测原动机调速系统具有相当大的惯性,致使原动机的机械功率与发电机的电磁功率失去了平衡,于是在机组大轴上相应将产生不平衡转矩,在这个不平衡转矩的作用下,转子的转速将发生变化。而系统中各发电机转子相对位置的变化,反过来又将影响系统中电流、电压和功率的变化,且各状态变量的变化较大。综上所述,不论是静态稳定性还是暂态稳定性问题,都是研究电力系统受到某种干扰后的运行过程。由于两种稳定性问题中受到的干扰不同,因而分析的方法也不同,除此之外,还有一种动态稳定。动态稳定是指当系统受到某种大干扰将使系统丧失稳定,当采用自动调节装置后,可将系统调节到不致丧失稳定,把这种靠自动调节装置作用得到的稳定叫做动态稳定。所谓动态稳定是指电力系统都到大干扰后,在计及自动调节和控制装置的作用下,保持系统稳定运行的能力。当系统遭受到某种扰动,而打破系统功率平衡时,各发电机组将因功率的不平衡而发生转速的变化。由于各发电机组的转动惯量不等,因此它们的转速变化也各不相同有的变化较大,有的变化较小,从而在各发电机组的转子之间产生相对运动。电力系统的稳定问题,主要是研究电力系统中发电机之间的相对运动问题。由于牵涉到机械运动,所以分析电力系统的稳定性也称电力系统的几点暂态过程的分析。8电力系统的稳定问题,还可以分为电源的稳定性和负荷大稳定性两类,电源的稳定性就是要分析同步发电机是否失步;负荷的稳定性就是要分析异步电动机是否失速、停顿。但往往是电源和负荷同时失去稳定。1.2电压稳定的研究内容目前的研究工作按照其目的的不同可以分为三大类:电压失稳现象机理探讨、电压稳定安全计算和预防/控制措施研究。(1)电压失稳机理探讨:其目的是要弄清楚主导电压失稳发生的本质因素,以及电压稳定问题和电力系统中其它问题的相互关系,电力系统中众多元件对电压稳定性的影响,在电压崩溃中所起的作用,从而建立起分析电压稳定问题的恰当系统模型。在这方面主要的研究手段有定性的物理讨论、电压崩溃现象的剖析、小干扰分析方法和时域仿真计算。早期的静态研究中机理认识集中体现在P-V曲线和Q-V曲线分析、潮流多解的稳定性分析和基于灵敏度系数的物理概念讨论。动态因素受到重视以后,负荷的动态特性,OLTC的负调压作用受到了普遍关注。目前普遍认为无功功率的平衡、发动机的无功出力限制、OLTC的动态和负荷的动态特性与电压崩溃关系密切。但是对电压崩溃的机理认识还很不一致,不同研究人员所采用的系统模型也有很大差别,这种现状表明迫切需要全面深入地分析电压稳定问题,分析它与电力系统中其它问题的相互关系,弄清各种因素的作用,抓住问题的本质,为不同情况下的电压稳定研究建模提供必要的指导原则。(2)电压稳定安全计算:主要包括两个方面,即寻找恰当的稳定指标和快速且有足够精度的计算方法。电压稳定指标(多为静态指标)总体上分成两类:裕度指标和状态指标。目前已提出的主要有:各类灵敏度指标、最小模特征值指标、电压稳定性接近指标、局部指标、负荷裕度指标等。现在又提出了很多新的指标,如的快速电压稳定指标FVSI,通过常规潮流程序计算每条线路的静态稳定指标,并按指标排列。从而确定特定运行点到崩溃点的距离,来判断系统的安全性。这个指标实现容易、计算简单、概念清晰,且预测结果较精确,可作为警告指标来9预防电压崩溃;在线电压稳定指标Lvsi,反映的是系统在当前运行状态下,某一支路电压稳定的程度;基于网损灵敏度理论的二阶指标ILSI,可以很好指示电压稳定水平,并具有良好的线性度,也可用于在线评估;提出将整个系统等值为一个简单的两节点系统,在此基础上计及感应电动机负荷,得到负荷母线在线小干扰电压稳定指标。两类指标都能给出系统当前运行点离电压崩溃点距离的某种量度。状态指标只取用当前运行状态的信息,计算比较简单,但存在非线性;而裕度指标能较好地反映电压稳定水平,但其计算涉及过渡过程的模拟和临界点的求取问题,计算量较大。从目前研究看,尽管许多电压稳定指标已被提出,但由于各种指标都采用了不同程度的简化,其准确性与合理性需要进一步验证和改进。这方面目前需要解决的主要有以下三个问题:①快速、准确的指标计算方法;②根据动态机理对各类指标的合理性、准确性进行检验,为运行部门选择指标提供依据;③在快速算法中计及影响电压稳定的主要动态元件的作用,比如发电机无功越限和负荷特性的影响等。(3)预防/控制措施的研究:以日本和法国采取的事故对策最为出色。前者强调增强事故状态下的电压控制能力,后者以其对电压崩溃过程的时段的划分,侧重于事故发生前的紧急状态下的预防措施。目前普遍认为,加强无功备用、提高无功应变能力、防止无功功率的远距离传输、紧急切负荷、闭锁甚至反调OLTC是预防严重事故的有效措施。1.3电压稳定的研究展望电压稳定研究作为电力系统领域的一个重要的实际课题,在近三十年来取得了许多重要的成果,一些电网工程人员研制了电压稳定分析和监测应用软件。但目前理论研究和应用实践表明,对电压稳定问题的认识深度和已取得的成果还远远不能与功角稳定问题研究所取得的理论认识深度及应用成果相比拟,还不能通过对电压稳定全面的分析、预防、监测、控制确保电力系统的安全可靠运行。因此目前仍然存在的问题和今后可能的研究方向主要有:(1)电压崩溃的机理研究;10(2)对各种元件的动态特性还缺乏全面的分析和统一的认识,负荷建模仍然是电压稳定研究的最大难题;(3)影响电压稳定的主要随机因素的统计特性的获取,以及这些随机因素统计特性比较复杂时,如何进行电压稳定概率分析;(4)根据各种不同的电压稳定裕度指标,开发相应的监测应用软件,使电压112.现今对于电压崩溃机理的认识电力系统稳定运行的前提是必须存在一个平衡点,最重要的一类电压不稳定性场景就是对应于系统参数变化导致平衡点不再存在的情况。由于负荷需求平滑缓慢地增加而使负荷特性改变直至不再存在与网络相应曲线的交点,固然是其中的一种场景,但事实上,更为重要的场景对应于大扰动,如发电和/或输电设备的停运,这种大扰动使网络特性急剧变动,扰动后网络的特性(如PV曲线)不再同未改变的负荷的相应特性相交,失去了平衡点,而导致电压崩溃。所以也需要研究由于大的结构和系统参数的突然变化所引起的不稳定机制。2.1短期电压失稳研究认为,引起暂态电压崩溃的主要原因:①短期动态扰动后失去平衡点;②缺乏把系统拉回到事故后短期动态的稳定平衡点的能力;③扰动后平衡点发生振荡(实际系统中未观察到);④长期动态引起

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功