基于T-S模糊模型的非线性时滞系统的稳定性分析及综合---Stabilityanalysisandsynthesisofnonlineartime-delaysystemsvialinearTakagi–Sugenofuzzymodels主要内容背景目的主要方法主要结论仿真验证本文亮点改进之处一、背景非线性时滞系统普遍存在经典方法:局部线性化方法TS模糊模型二、主要方法1、文主要用TS模糊模型的方法表示非线性时滞系统2、用Lyapunov函数的方法分析其稳定性3、LMI的数学技巧4、并行分布式补偿的思想三、主要结论无控制输入情况下的稳定的充分性条件设计状态反馈控制器,并推导了稳定的充分条件基于状态观测器的状态反馈控制器设计,并推导稳定的充分条件定理一用TS模型表示非线性系统:Theorem1Theequilibriumofthecontinuous-timefuzzysystemwithtime-delaydescribedby(6)isasymptoticallystableinthelargeifthereexistacommonmatrixP0andrmatricesSi0suchthatfori=1,2,…r.Theorem1Proof:Boydetal.1994Boydetal.19942xTy≤xTQx+yTQ-1y其中Q0Theorem1Theorem1Theorem1Theorem1Remark:Theorem2Theorem2Theorem2Thereexistsastatefeedbackfuzzycontrollaw(13)suchthattheequilibriumoftheclosed-loopfuzzysystemwithtime-delaydescribedby(14)isasymptoticallystableinthelargeifthereexistmatricesX0,Si0andYisatisfyingSi≥XandthefollowingLMIsforalliandjexceptingthepairs(i,j)suchthathi(z(t))hj(z(t))=0,∨t,AndthenthestatefeedbackgaincanbeconstructedasTheorem3Assumethatthenumberofrulesthatfireforalltislessthanorequaltoswhere1s≤r.Thereexistsastatefeedbackfuzzycontrollaw(13)suchthattheequilibriumoftheclosed-loopfuzzysystemwithtime-delaydescribedby(14)isasymptoticallystableinthelargeifthereexistmatricesX0,Z,SiandYisatisfyingSi≥XandthefollowingLMIs:foralliandjexceptingthepairs(i,j)suchthathi(z(t))hj(z(t))=0,∨tTheorem3Proof:Theorem3Lemma2.Ifthenumberofrulesthatfireforalltislessthanorequaltoswhere1s≤r,thenTheorem3Theorem4Theorem4Theorem4Theorem4Theorem4Theorem4Theorem4Theequilibriumoftheclosed-loopfuzzytime-delaysystemwithobserver-basedcontrollaw(25)describedby(28)isasymptoticallystableinthelargeifthereexistmatricesX10,X20;S1i0andS2i0;YiandRisatisfyingandtheLMIsin(36)–(39)foralliandjexceptingthepairs(i,j)suchthathi(z(t))hj(z(t))=0,∨t.Andthenthestatefeedbackgainandobservercanbeconstructedasrespectively;fori=1,2,…r.Theorem5Assumethatthenumberofrulesthatfireforalltislessthanorequaltoswhere1s≤r.Theequilibriumoftheclosed-loopfuzzytime-delaysystemwithobserver-basedcontrollaw(25)describedby(28)isasymptoticallystableinthelargeifthereexistmatricesX10,X20;Z1≥-X1,Z2≥-X2;S1i0andS2i0;YiandRisatisfyingtheLMIsin(40)andTheorem5foralliandjexceptingthepairs(i,j)suchthathi(z(t))hj(z(t))=0,∨t.Andthenthestatefeedbackgainandobservercanbeconstructedasrespectivelyfori=1,2,…r.四、仿真实验continuous-timetruck-trailermodel:四、仿真实验四、仿真实验五、本文亮点工作量大T-S模糊模型数学技巧六、改进之处李雅普诺夫函数的构造可以改进。LMI求公共的P具有保守性,如果r比较大,公共的P未必存在。谢谢!!