A General Bayesian Approach To Blind Source Separa

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

AGeneralBayesianApproachToBlindSourceSeparationWithCorrelationDanielB.RoweMarch22,1999AbstractThispaperpresentsaBayesianstatisticalapproachtoblindsepa-rationofcorrelatedsourceswhichisageneralizationofthemethodsinRowe(1999).TheBayesianblindseparationofsourcesmodelisex-tendedtothecasewhereboththeobservedmixedsignalsvectorsandtheunobservedsourcesignalvectorscouldbecorrelated.Further,thelinearsynthesismodelisextendedtoaccomodatethiscorrelationandallowthemixingmatrixtochange.Forsimplicity,itisassumedthatthemixingmatrixisconstant,andcorrelationsimplicationsareexploredfortheobservedmixedsignalsandtheunobservedsources.1CorrelatedModel1.1IntroductionTheproblemaddressedbyblindsourceseparationisthatofseparatingun-observablesourcesignalswhenmixedsignalsareobserved.AlinearsynthesismodelisadoptedwheretheobservationsarelinearcombinationsofthesourcesandaBayesianstatisticalapproachistaken.Tomotivatetheblindseparationofsourcesmodel,thecontextofthe\cock-tailpartyproblemisadopted.Atacocktailparty,therearepmicrophonesthatrecordorobservempartygoersorspeakersatntimeincrements.Theobservedconversationsconsistofmixturesoftrueunobservableconversations.Thep-dimensionalmixedsignalvectorsxi=(xi1;:::;xip)0areobservedandtheobjectiveistoseparatetheseobservedsignalvectorsintom-dimensionaltrueunderlyingsourcesignalvectors,si=(xi1;:::;xim)0wherei=1;:::;n.Theobservationvectorsarestackedintoasinglevectorwhichisnp1,andthemodeliswritenas(xj;m;T;s)=+Ts+;(np1)(np1)(npnm)(nm1)(np1)(1.1)1wherex=annp-dimensionalvectorofobservedsignalsx=(x01;:::;x0n)0,=annpdimensionalgeneralmeanvector,=(01;:::;0n)0,T=anpnmmatrixofmixingconstants,s=annm-dimensionalunobservedtruesourcesignalvector,s=(s01;:::;s0n)0,=annp-dimensionalobservationerrorvector,and=(01;:::;0n)0.1.2LikelihoodTheerrorsoftheobservationsareassumedtobenormallydistributedwithmeanzeroandcovariancematrix,ornotationally(j)N(0;):(1.1)Fromthisassumption,thedistributionoftheobservationsis(xj;;m;T;s)N(+Ts;);(1.2)andthelikelihoodfortheobservationsisp(xj;;m;T;s)=(2)np2jj12e12(xTs)01(xTs):(1.3)Thevectoristheunobservedmeanbackgroundsignal.Forsimplicity,itisassumedthatthebackgroundsignalisthesameovertimethusi=foralliand=e,whereeisann1vectorofones.Itcanbeshownthatthemaximumlikelihoodestimatorforthemeanisx,sowithoutlossofgeneralityandforsimplicity,theobservationvectorsareassumedtohavebeencenteredaboutthesamplemean.Themodelandlikelihoodnowbecomes(xjm;T;s)=Ts+;(np1)(npnm)(nm1)(np1)(1.4)andp(xj;m;T;s)=(2)np2jj12e12(xTs)01(xTs):(1.5)Followingtheassumptionthatthemixingmatrixisconstantovertime,itisassumedthatT=Inandthustheusuallinearsynthesismodel2(xjm;T;s)=(In)s+;(np1)(npnm)(nm1)(np1)(1.6)isobtainedwithlikelihoodp(xj;m;T;s)=(2)np2jj12e12[x(In)s]01[x(In)s]:(1.7)Thegoalistorecovertheoriginalsourcesorunmixthesourcessbycom-putingestimatesoftheirvaluesfromprobabilitydistributions.Knowledgeastothemixingprocessisalsodesiredandisobtainedbyestimatingthemixingmatrixandtheerrormatrix.1.3PriorsUncertaintyabouttheparametersisrepresentedbyusingnaturalconjugatepriordistributions.RecallasinRowe(1999)thatthesourcesarerandomvariableswithanassociateddistribution.Thisdistributionisincludedwiththepriorsforthemixingmatrixandtheobservationerrorcovariancematrix.Itisassumedthatthejointpriordistributionfortheunknownparametersisgivenbyp(;s;;)=p()p(sjm;)p(jm)p(jm);(1.8)wherep()=c(np;)jj2e12tr1A;0;2np;(1.9)p(sjm;)=(2)nm2jj12e12s01s;0(1.10)p(jm)=(2)pm2jj12e12(0)01(0);0;(1.11)andc(np;)isaconstantdependingonlyonnpand.Thepriorforwillbediscussedlater.Itisassumedapriori,thattheerrordisturbancecovariancematrixisinvertedWishart.Further,itisassumedthatthesourcesandthemixingmatrixareindependentlynormallydistributedgiventhenumberoffactors.Withoutlossofgenerality,itisassumedthatthevarianceforthesourcesisunitysothatisacorrelationmatrix(seePress1982p.331).Notethat0(1;:::;p),andthemixingconstantshavebeenwrittenasvec(0)=(01;:::;0p)0.(Vectorswillbedenotedaslowercaseandmatricesas3uppercaseletters.)Alsonotethatthefollowingmodelassumptionregardingthedistributionoftheunobservedsourceshasbeenmade.Itisassumedthat(II)(sjm;)N(0;),thisisanalogoustoassumption(b)intheRowe(1999)model.Itdiersinthathere,thesourcesignalvectorsareallowedtobecorrelated.Itisalsoassumedthat(III)(sjm;)and(j)areindependentrandomvectors.Thisistheidenticaltoassumption(c)intheRowe(1999)model.Thisas-sumptionisevidentfromthelikelihoodandthemodelpriordistributionforthesources.1.4PosteriorByBayes’rule,thejointposteriordistributionfortheunknownparametersofinterestisgivenbyp(;s;;jx;m)/p(;s;;jm)p(xj;s;;m)/p()p(sjm)p(jm)p(jm)p(xj;m;s;)/jj2e12tr1Ajj12e12s01sjj12e12(0)01(0)jj12e12[x(In)s]01[x(In)s]p(jm)/jj(+1)2e12tr1Ajj12e12s01sjj12e12(0)01(0)e12[x(In)s]01[x(In)s]p(jm)(1.12)notethatapriordistributionmuststillbeassessesfor,whichmusthavethepropertythatthediagonalelementsareunity.

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功