A posteriori error estimates for finite element ap

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

APOSTERIORIERRORESTIMATESFORFINITEELEMENTAPPROXIMATIONSOFTHECAHN-HILLIARDEQUATIONANDTHEHELE-SHAWFLOWXIAOBINGFENGANDHAIJUNWUyAbstract.Thispaperdevelopsaposteriorierrorestimatesofresidualtypeforconformingandmixed niteelementapproximationsofthefourthorderCahn-Hilliardequationut+u1f(u)=0.Itisshownthattheaposteriorierrorboundsdependson1onlyinsomelowpolynomialorder,insteadofexponentialorder.Usingtheseaposteriorierrorestimates,wecon-structanadaptivealgorithmforcomputingthesolutionoftheCahn-Hilliardequationanditssharpinterfacelimit,theHele-Shawow.Numericalexperimentsarepresentedtoshowtherobustnessande ectivenessofthenewerrorestimatorsandtheproposedadaptivealgorithm.Keywords.Cahn-Hilliardequation,Hele-Shawow,phasetransition,conformingelements,mixed niteelementmethods,aposteriorierrorestimates,adaptivityAMSsubjectclassi cations.65M60,65M12,65M15,53A101.Introduction.Inthispaperwederiveaposteriorierrorestimatesandde-velopanadaptivealgorithmbasedontheerrorestimatesforconformingandmixed niteelementapproximationsofthefollowingCahn-HilliardequationanditssharpinterfacelimitknownastheHele-Shawow[2,37]ut+u1f(u)=0inT:=(0;T);(1.1)@u@n=@@nu1f(u)=0in@T:=@(0;T);(1.2)u=u0inf0g;(1.3)whereRN(N=2;3)isaboundeddomainwithC2boundary@oraconvexpolygonaldomain.T0isa xedconstant,andfisthederivativeofasmoothdoubleequalwellpotentialtakingitsglobalminimumvalue0atu=1.Awellknownexampleoffisf(u):=F0(u)andF(u)=14(u21)2:Forthenotationbrevity,weshallsuppressthesuper-indexonuthroughoutthispaperexceptinSection5.Theequation(1.1)wasoriginallyintroducedbyCahnandHilliard[11]todescribethecomplicatedphaseseparationandcoarseningphenomenainameltedalloythatisquenchedtoatemperatureatwhichonlytwodi erentconcentrationphasescanexiststably.TheCahn-Hilliardhasbeenwidelyacceptedasagood(conservative)modeltodescribethephaseseparationandcoarseningphenomenainameltedalloy.ThefunctionurepresentstheconcentrationofoneofthetwometalliccomponentsDepartmentofMathematics,TheUniversityofTennessee,Knoxville,TN37996,U.S.A.(xfeng@math.utk.edu).TheworkofthisauthorispartiallysupportedbytheNSFgrantDMS-0410266.yDepartmentofMathematics,NanjingUniversity,Jiangsu,210093,PRChina.(hjw@nju.edu.cn).TheworkofthisauthorispartiallysupportedbytheChinaNSFgrant10401016,bytheChinaNationalBasicResearchProgramgrant2005CB321701,andbytheNaturalScienceFoundationofJiangsuProvinceunderthegrantBK2006511.1arXiv:0708.2116v1[math.NA]15Aug20072X.FengandH.Wuofthealloy.Theparameterisan\interactionlength,whichissmallcomparedtothecharacteristicdimensionsonthelaboratoryscale.Cahn-Hilliardequation(1.1)isaspecialcaseofamorecomplicatedphase eldmodelforsolidi cationofapurematerial[10,29,33].Forthephysicalbackground,derivation,anddiscussionoftheCahn-Hilliardequationandrelatedequations,wereferto[4,2,7,11,13,20,35,36]andthereferencestherein.ItshouldbenotedthattheCahn-Hilliardequation(1.1)canalsoberegardedastheH1-gradientowfortheenergyfunctional[28](1.4)J(u):=Zh12jruj2+12F(u)idx:Inadditiontoitsapplicationinphasetransition,theCahn-Hilliardequation(1.1)hasalsobeenextensivelystudiedinthepastduetoitsconnectiontothefollowingfreeboundaryproblem,knownastheHele-ShawproblemandtheMullins-Sekerkaproblemw=0innt;t2[0;T];(1.5)@w@n=0on@;t2[0;T];(1.6)w=ont;t2[0;T];(1.7)V=12h@w@nitont;t2[0;T];(1.8)0=00whent=0:(1.9)Here=Z11rF(s)2ds:andVare,respectively,themeancurvatureandthenormalvelocityoftheinterfacet,nistheunitoutwardnormaltoeither@ort,[@w@n]t:=@w+@n@w@n,andw+andwarerespectivelytherestrictionofwin+tandt,theexteriorandinterioroftin.Undercertainassumptionontheinitialdatumu0,itwas rstformallyprovedbyPego[37]that,as&0,thefunctionw:=u+1f(u),knownasthechemicalpotential,tendstow,which,togetherwithafreeboundary:=[0tT(tftg)solves(1.5)-(1.9).Alsou!1intforallt2[0;T],as&0.Therigorousjusti cationofthislimitwascarriedoutbyAlikakos,BatesandChenin[2]undertheassumptionthattheaboveHele-Shaw(Mullins-Sekerka)problemhasaclassicalsolution.Later,Chen[13]formulatedaweaksolutiontotheHele-Shaw(Mullins-Sekerka)problemandshowed,usinganenergymethod,thatthesolutionof(1.1)-(1.3)approaches,as&0,toaweaksolutionoftheHele-Shaw(Mullins-Sekerka)problem.OneofaconsequencesoftheconnectionbetweentheCahn-HilliardequationandtheHele-Shawowisthatforsmallthesolutionto(1.1)-(1.3)equals1inthetwobulkregionsofwhichisseparatedbyathinlayer(calleddi useinterface)ofwidthO().Asexpected,thesolutionhasasharpmovingfrontoverthetransitionlayer.AnothermotivationfordevelopingecientadaptivenumericalmethodsfortheCahn-Hilliardequationisitsapplicationsfarbeyonditsoriginalroleinphasetransi-tion.TheCahn-Hilliardequationisindeedafundamentalequationandanessentialbuildingblockinthephase eldtheoryformovinginterfaceproblems(cf.[31]),itAdaptivemethodsfortheCahn-Hilliardequation3isoftencombinedwithotherfundamentalequationsofmathematicalphysicssuchastheNavier-Stokesequation(cf.[22,30,34]andthereferencestherein)tobeusedasdi useinterfacemodelsfordescribingvariousinterfacedynamics,suchasowoftwo-phaseuids,fromvariousapplications.Theprimarynumericalchallengeforsol

1 / 29
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功