第2章电路的分析方法2.1电阻串并联联接的等效变换2.3电压源与电流源及其等效变换2.4支路电流法2.5结点电压法2.6叠加原理2.7戴维宁定理与诺顿定理本章要求:1.掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。2.了解实际电源的两种模型及其等效变换。第2章电路的分析方法2.1电阻串并联联接的等效变换2.1.1电阻的串联特点:1)各电阻一个接一个地顺序相联;两电阻串联时的分压公式:URRRU2111URRRU2122R=R1+R23)等效电阻等于各电阻之和;4)串联电阻上电压的分配与电阻成正比。R1U1UR2U2I+–++––RUI+–2)各电阻中通过电流相同;应用:降压、限流、调节电压等。2.1.2电阻的并联两电阻并联时的分流公式:IRRRI2121IRRRI211221111RRR(3)等效电阻的倒数等于各电阻倒数之和;(4)并联电阻上电流的分配与电阻成反比。特点:(1)各电阻联接在两个公共的结点之间;RUI+–I1I2R1UR2I+–(2)各电阻两端的电压相同;应用:分流、调节电流等。例1:计算图中所示电阻电路的等效电阻R,并求电流I和I5。1R2R227R3V3I465R6R14R45I3R解:可以利用电阻串联与并联的特征对电路进行简化7R3V3I6R134R2112R12I5I5R67I7R3V3I2112R12I7I3456R1R2R227R3V3I465R6R14R45I3RV3I51R(a)(ab等电位,R3//R4)(b)(c)(d)abab由(d)图可知51R,ARUI1777R3V3I6R134R2112R12I5I5R67IAIII1712ARUI21256346345IRRRRRIA31(c)由(c)图可知V3I51R(d)2.3电压源与电流源及其等效变换2.3.1电压源组成电压源模型由上图电路可得:U=E–IR0若R0=0理想电压源:UEU0=E电压源的外特性IUIRLR0+-EU+–二部分组成:(1)没有内阻的,只提供电动势的理想电压源E;(2)大小为R0。与理想电压源串联的内阻。OSREI若R0RL,UE,可近似认为是理想电压源。理想电压源O电压源短路电流理想电压源(恒压源)例1:(2)输出电压是一定值,恒等于电动势。对直流电压,有UE。(3)恒压源中的电流由外电路决定。特点:(1)内阻R0=0IE+_U+_设E=10V,接上RL后,恒压源对外输出电流。RL当RL=1时,U=10V,I=10A当RL=10时,U=10V,I=1A外特性曲线IUEO电压恒定,电流随负载变化问题•理想电压源可以被短路吗?为什么?2.3.2电流源0SRUIIIRLU0=ISR0电流源的外特性IU理想电流源OIS电流源是由电流IS和内阻R0并联的电源的电路模型。由上图电路可得:若R0=理想电流源:IIS若R0RL,IIS,可近似认为是理想电流源。电流源电流源模型R0UR0UIS+-开路电压短路电流理想电流源(恒流源)例1:(2)输出电流是一定值,恒等于电流IS;(3)恒流源两端的电压U由外电路决定。特点:(1)内阻R0=;设IS=10A,接上RL后,恒流源对外输出电流。RL当RL=1时,I=10A,U=10V当RL=10时,I=10A,U=100V外特性曲线IUISOIISU+_电流恒定,电压随负载变化。问题•理想电流源可以被开路吗?为什么?2.3.3电压源与电流源的等效变换•等效的理解•等效是对负载而言的。如果源发生了变化,从源1变成了源2,但是负载感觉不到这种变化(即负载两端电压或流过负载电流保持不变)。那么对负载而言,源1和源2是等效的。即源1和源2可以互换。源负载I+U-2.3.3电压源与电流源的等效变换由图a:U=E-IR0(1)由图b:U=ISR0–IR0(2)IRLR0+–EU+–电压源等效变换条件:E=ISR00SREIRLR0UR0UISI+–电流源0SRUII令(1)=(2)得:①电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。注意事项:例:当RL=时,电压源:I=0,内阻R0中不损耗功率;电流源:I=Is,内阻R0中损耗功率。当RL=0时,电压源:I=E/R0,内阻R0中损耗功率;电流源:I=Is,内阻R0中损耗功率。②等效变换时,两电源的参考方向要一一对应。即正端流出。R0+–EabISR0abR0–+EabISR0ab③理想电压源与理想电流源之间无等效关系。④任何一个电动势E和某个电阻R串联的电路,都可化为一个电流为IS和这个电阻并联的电路。理想电压源:R0=0,短路电流为理想电流源:R0=,开路电压U0为表2.3.1电压源和电流源的对照电源状态电压源电流源理想电压源理想电流源开路UER0IsEI000短路U000IE/R0IsIs等效条件E=R0IsIs=E/R0不等效用等效电源变换进行电路分析•注意点:•1、如果是并联的采用电流源比较方便,反之采用电压源比较方便;•2、另一种方法:采用统一电源形式。也就是将电源转换成一种电源形式。例2:试用电压源与电流源等效变换的方法计算2电阻中的电流。A1A22228I解:–8V+–22V+2I(d)2由图(d)可得6V3+–+–12V2A6112I(a)2A3122V+–I2A61(b)4A2222V+–I(c)aba’b’c’c例3:解:统一电源形式试用电压源与电流源等效变换的方法计算图示电路中1电阻中的电流。2+-+-6V4VI2A34612A362AI4211AI4211A24AA2A3122I解:I4211A24A1I421A28V+-I411A42AI213A例4:电路如图。U1=10V,IS=2A,R1=1Ω,R2=2Ω,R3=5Ω,R=1Ω。(1)求电阻R中的电流I;(2)计算理想电压源U1中的电流IU1和理想电流源IS两端的电压UIS;(3)分析功率平衡。(自学)解:(1)由电源的性质及电源的等效变换可得:A10A110111RUIA6A22102S1IIIaIRISbI1R1(c)IR1IR1RISR3+_IU1+_UISUR2+_U1ab(a)aIR1RIS+_U1b(b)(2)由图(a)可得:A4A6A2S1R---IIIA2A51031R3RUI理想电压源中的电流A6A)4(A2R1R3U1---III理想电流源两端的电压V10V22V61S2S2ISIRRIIRUUaIRISbI1R1(c)aIR1RIS+_U1b(b)IR1IR1RISR3+_IU1+_UISUR2+_U1ab(a)各个电阻所消耗的功率分别是:W36=6×1==22RIPRW16=4×1==22111)(-RRIRPW8=2×2==22S22IRPRW20=2×5==22333RRIRP两者平衡:(60+20)W=(36+16+8+20)W80W=80W(3)由计算可知,本例中理想电压源与理想电流源都是电源,发出的功率分别是:W60=6×10==111UUIUPW20=2×10==SSSIUPII2.4支路电流法(适用于不能用电阻化简的复杂电路)支路电流法:以支路电流为未知量、应用基尔霍夫定律(KCL、KVL)列方程组求解。对上图电路支路数:b=3结点数:n=212baE2R2R3R1E1I1I3I23回路数=3单孔回路(网孔)=2若用支路电流法求各支路电流应列出三个方程1.在图中标出各支路电流的参考方向,对选定的回路标出回路循行方向。2.应用KCL对结点列出(n-1)个独立的结点电流方程。(上题中节点a和b不独立)3.应用KVL对回路列出b-(n-1)个独立的回路电压方程(通常可取网孔列出)。4.联立求解b个方程,求出各支路电流。baE2R2R3R1E1I1I3I2对结点a:例1:12I1+I2–I3=0对网孔1:对网孔2:I1R1+I3R3=E1I2R2+I3R3=E2支路电流法的解题步骤(方程个数的确定):(1)应用KCL列(n-1)个结点电流方程因支路数b=6,所以要列6个方程。(2)应用KVL选网孔列回路电压方程(3)联立解出IG支路电流法是电路分析中最基本的方法之一,但当支路数较多时,所需方程的个数较多,求解不方便。例2:adbcE–+GI2I4IGI1I3I对结点a:I1–I2–IG=0对网孔abda:IGRG–I3R3+I1R1=0对结点b:I3–I4+IG=0对结点c:I2+I4–I=0对网孔acba:I2R2–I4R4–IGRG=0对网孔bcdb:I4R4+I3R3=E试求检流计中的电流IG。RG(1)应用KCL列结点电流方程恒流源支路的电流已知,则未知电流只有3个,所以可只列3个方程。(2)应用KVL列回路电压方程(3)联立解得:I1=2A,I2=–3A,I3=6A例3:试求各支路电流。对结点a:I1+I2–I3=–7对回路1:12I1–6I2=42对回路2:6I2+3I3=0baI2I342V+–I11267A3cd当不需求a、c和b、d间的电流时,(a、c)(b、d)可分别看成一个结点。支路中含有恒流源。12因所选回路不包含恒流源支路,所以,3个网孔列2个KVL方程即可。(1)应用KCL列结点电流方程支路数b=4,且恒流源支路的电流已知。(2)应用KVL列回路电压方程(3)联立解得:I1=2A,I2=–3A,I3=6A例3:试求各支路电流。对结点a:I1+I2–I3=–7对回路1:12I1–6I2=42对回路2:6I2+UX=0baI2I342V+–I11267A3cd12因所选回路中包含恒流源支路,而恒流源两端的电压未知,所以有3个网孔则要列3个KVL方程。3+UX–对回路3:–UX+3I3=0•例4.电路如右图,求I2?•随堂解。511156v12vI1abI2I3I5I4结论:如果电路中的某一段没有被包含在一个回路中,该段电路在的电流为0。2.5结点电压法结点电压的概念:任选电路中某一结点为零电位参考点(用表示),其他各结点对参考点的电压,称为结点电压。结点电压的参考方向从结点指向参考结点。结点电压法适用于支路数较多,结点数较少的电路。结点电压法:以结点电压为未知量,列方程求解。在求出结点电压后,可应用基尔霍夫定律或欧姆定律求出各支路的电流或电压。baI2I3E+–I1R1R2ISR3在左图电路中只含有两个结点,若设b为参考结点,则电路中只有一个未知的结点电压。2个结点的结点电压方程的推导:设:Vb=0V结点a电压为U,参考方向从a指向b。111RIEU因为111RUEI所以2.应用欧姆定律求各支路电流:222RUEI33RUI1.用KCL对结点a列方程:I1–I2+IS–I3=0E1+–I1R1U+-baE2–+I2ISI3E1+–I1R1R2R3+–U同理将各电流代入KCL方程则有:3211RUIRUERUES2整理得:1212123111SEEIRRURRRRIREUS1注意:(1)上式仅适用于两个结点的电路。(2)分母是各支路电导之和,恒为正值;分子中各项可以为正,也可以可负。当E和IS与结点电压的参考方向相反时取正号,相同时则取负号。而与各支路电流的参考方向无关。特别提醒:电源的方向由负极指向正极2个结点的结点电压方程的推导:即结点电压方程:对节点电压求解公式的解释理想电流源等效网络电源内阻等效网络电阻网络1电阻网络2电阻网络Naba’b’I电源网络1电源网络N电阻网络1电阻网络2电阻网络NabRIREUS1电压U等于电流I除以电导1/R原网络等效网络例1:baI2I342V+–I11267A3试求各支路电流。解: