ToappearinJournalofAlgebraicGeometryCHOWQUOTIENTSANDPROJECTIVEBUNDLEFORMULASFOREULER-CHOWSERIESE.JAVIERELIZONDOANDP.LIMA-FILHOAbstract.GivenaprojectivealgebraicvarietyX,let p(X)denotethemonoidofe ectivealge-braicequivalenceclassesofe ectivealgebraiccyclesonX.Thep-thEuler-ChowseriesofXisanelementintheformalmonoid-ringZ[[ p(X)]]de nedintermsofEulercharacteristicsoftheChowvarietiesCp; (X)ofX,with 2 p(X).Weprovideasystematictreatmentofsuchseries,andgiveprojectivebundleformulaswhichgeneralizepreviousresultsby[LY87]and[Eli94].ThetechniquesusedinvolvetheChowquotientsintroducedin[KSZ91],andthisallowsthecomputationofvari-ousexamplesincludingsomeGrassmanniansand agvarieties.Therearerelationsbetweentheseexamplesandrepresentationtheory,andfurtherresultspointtointerestingconnectionsbetweenEuler-ChowseriesforcertainvarietiesandthetopologyofthemodulispacesM0;n+1.Contents1.Introduction22.Preliminaries63.TheEuler-Chowseriesofprojectivevarieties74.Projectivebundleformulas104.1.Projectiveclosureoflinebundles145.ChowquotientsandEuler-Chowseries165.1.Examples19AppendixA.AlgebraicConstructions27A.1.Monoidswithpropermultiplication27A.2.InvariantsforM-gradedalgebras30References321991MathematicsSubjectClassi cation.Primary:14C25;Secondary:14C05.Keywordsandphrases.Chowvarieties,e ectivealgebraicequivalence,monoid-gradedalgebras,generatingfunc-tions,Chowquotients,invariantcycles,projectivebundles,Grassmannians, agvarieties.The rstauthorwassupportedinpartbygrantsUNAM-DGAPAIN101296andCONACYT3936-E.ThesecondauthorwaspartiallysupportedbyNSFgrant#DMS-9401533.12E.JAVIERELIZONDOANDP.LIMA-FILHO1.IntroductionTheuseoftopologicalinvariantsonmodulispaceshasplayedavitalroleinvariousbranchesofmathematicsandmathematicalphysicsinthelasttwodecades.Alightsamplingunderthisvastumbrellaincludesworksingaugetheory,thetheoryofinstantons,variousmodulispacesofvectorbundles,modulispacesofcurvesandtheircompacti cations,ChowvarietiesandHilbertschemes.InthisworkwestudyaclassofinvariantsforprojectivevarietiesarisingfromtheEulercharac-teristicsoftheirChowvarieties.Theseinvariants rstappearedintheworkofH.B.LawsonandSteveS.T.Yau[LY87],whosetechniquesplayanimportantroleinthispaper,andtheypresent,invariousinstances,aquiteniceandelegantbehaviorwhichcanoftenbecodi edinsimplegeneratingfunctions.Asamotivation,westartwithsomeparticularcases,whicharewellstudiedintheliterature.LetXbeaconnectedprojectivevarietyandletSP(X)denotethedisjointunion‘d 0SPd(X)ofallsymmetricproductsofX,withthedisjointuniontopology,whereSP0(X)isasinglepoint.Onecande neafunctionE0(X):Z+= 0(SP(X))!ZwhichsendsdtotheEulercharacteristic (SPd(X))ofthed-foldsymmetricproductofX.Thisiswhatwecallthe0-thEuler-ChowfunctionofX.Thesameinformationcanbecodi edasaformalpowerseriesE0(X)=Pd 0 (SPd(X))td,andaresultofMacdonald[Mac62]showsthatE0(X)isgivenbytherationalfunctionE0(X)=(1=(1 t)) (X).Anotherfamiliarinstancearisesinthecaseofdivisors.Givenann-dimensionalprojectivevarietyX,letDiv+(X)denotethespaceofe ectivedivisorsonXandassumethatPic0(X)=f0g.ConsiderthefunctionE:Pic(X)!ZwhichsendsL2Pic(X)todimH0(X;O(L)).Observethat1.GivenL2Pic(X),thenE(L)6=0ifandonlyifL=O(D)forsomee ectivedivisorD;2.Underthegivenhypothesis,algebraicandlinearequivalencecoincide,andtwoe ectivedivi-sorsDandD0arealgebraicallyequivalentifandonlyiftheyareinthesamelinearsystem.ThelastobservationimpliesthatDiv+(X)canbewrittenasDiv+(X)=‘ 2A n 1 X Div+(X) ,whereA n 1 X isthemonoidofalgebraicequivalenceclassesofe ectivedivisors(cf.Fulton[Ful84,x12]),andDiv+(X) isthelinearsystemassociatedto 2A n 1 X .The rstobservationshowsthattheonlyrelevantdatatoEisgivenbyA n 1 X Pic(X).Therefore,wemightaswellrestrictEandde nethe(n 1)-stEuler-ChowfunctionofXasthefunctionEn 1 X :A n 1 X !Z+whichsends 2A n 1 X totheEulercharacteristic (Div+(X) )=dimH0(X;O(L )),whereL isthelinebundleassociatedto .Example1.1.AnevenmorerestrictivecaseariseswhenPic(X) =Z,andA n 1 X =Z+isgeneratedbytheclassofaveryamplelinebundleL.Thenthe(n 1)-stEuler-ChowfunctionEn 1 X =Pd 0dimH0(X;O(L n))tnisjusttheHilbertfunctionassociatedtotheprojectiveembeddingofXinducedbyL.Thisisonceagainarationalfunction.CHOWQUOTIENTSANDEULER-CHOWSERIES3Ingeneral,thesituationisnotsosimple,andweneedtointroduceadditionalnotionsinordertoapproachcyclesofarbitrarydimension.WestartwiththeChowmonoidCp X ofe ectivep-cyclesonX,whichcanbewrittenasadisjointunion‘ 2 p X Cp; (X)ofconnectedpro-jective(Chow)varietiesCp; (X);cf.Section3.Here, p X = 0(Cp X )denotesthemonoidofe ectivealgebraicequivalenceclassesofe ectivep-cycles.ThismonoidshouldbecontrastedwithA p X ,themonoidofalgebraicequivalenceclassesofe ectivep-cycles;cf.[Ful84,x12].Infact,thereisa nitesurjectivemonoidmorphism p X !A p X ,andtheGrothendieckgroupassociatedtobothmonoidsisAp X ,thegroupofalgebraicequivalenceclassesofp-cyclesonX;cf.Friedlander[Fri91].ThepropertiesandrelationsamongthesemonoidsisdiscussedinSection3.Thep-thEuler-ChowfunctionoftheprojectivevarietyXisthende nedasthefunctionEp X : p X !Z(1) 7 ! (Cp; (X))whichcanbecompletelyencodedasaformalpowerseriesEp X =P 2 p X