04电容式传感器.ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第4章电容式传感器1.优点:Ⅰ.温度稳定性好电容式传感器的电容值一般与电极材料无关,有利于选择温度系数低的材料,又因本身发热极小,影响稳定性甚微。而电阻传感器有铜损等,易发热产生零漂。第二节特点和应用中存在的问题4.2.1特点章电容式传感器Ⅱ.结构简单电容式传感器结构简单,易于制造,易于保证高的精度,可以做得非常小巧,以实现某些特殊的测量;能工作在高温,强辐射及强磁场等恶劣的环境中,可以承受很大的温度变化,承受高压力,高冲击,过载等;能测量超高温和低压差,也能对带磁工作进行测量。Ⅲ.动态响应好电容式传感器由于带电极板间的静电引力很小(约几个10-5N),需要的作用能量极小,又由于它的可动部分可以做得很小很薄,即质量很轻,因此其固有频率很高,动态响应时间短,能在几兆Hz的频率下工作,特别适用于动态测量。且其介质损耗小可以用较高频率供电,因此系统工作频率高。可用于测量高速变化的参数。3Ⅳ.可以非接触测例如非接触测量回转轴的振动或偏心率、小型滚珠轴承的径向间隙等。当采用非接触测量时,电容式传感器具有平均效应,可以减小工件表面粗糙度等对测量的影响。电容式传感器除了上述的优点外,还因其带电极板间的静电引力很小,所需输入力和输入能量极小,因而可测极低的压力、力和很小的加速度、位移等,可以做得很灵敏,分辨力高,能敏感0.01μm甚至更小的位移;由于其空气等介质损耗小,采用差动结构并接成电桥式时产生的零残极小,因此允许电路进行高倍率放大,使仪器具有很高的灵敏度。第4章电容式传感器42.缺点Ⅰ.输出阻抗高,负载能力差电容式传感器的容量受其电极的几何尺寸等限制,一般微几十导几百皮法,其值只有几个皮法,使传感器的输出阻抗很高,尤其当采用音频范围内的交流电源时,输出阻抗高达108~106Ω。因此传感器的负载能力很差,易受外界干扰影响而产生不稳定现象,严重时甚至无法工作,必须采取屏蔽措施,从而给设计和使用带来极大的不便。容抗大还要求传感器绝缘部分的电阻值极高(几十兆欧以上),否则绝缘部分将作为旁路电阻而影响仪器的性能(如灵敏度降低),为此还要特别注意周围的环境如湿度、清洁度等。第4章电容式传感器5若采用高频供电,可降低传感器输出阻抗,但高频放大、传输远比低频的复杂,且寄生电容影响大,不易保证工作十分稳定。Ⅱ.寄生电容影响大电容式传感器的初始电容量小,而连接传感器和电子线路的引线电缆电容(1~2m导线可达800pF)、电子线路的杂散电容以及传感器内极板于其周围导体构成的电容等所谓“寄生电容”却较大,不仅降低了传感器的灵敏度,而且这些电容(如电缆电容)常常是随机变化的,将使仪器工作很不稳定,影响测量精度。因此对电缆的选择、安装、接法都有要求。第4章电容式传感器6随着材料、工艺、电子技术,特别是集成技术的发展,使电容式传感器的优点得到发扬而缺点不断地得到克服。电容式传感器正逐渐成为一种高灵敏度、高精度,在动态、低压及一些特殊测量方面大有发展前途地传感器。4.2.2应用中存在的问题1.等效电路上节对各种电容传感器的特性分析,都是在纯电容的条件下进行的。这在可忽略传感器附加损耗的一般情况下也是可行的。若考虑电容传感器在高温、高湿及高频激励的条件下工作而不可忽视其附加损耗和电效应影响时,其等效电路如图4.9所示。第4章电容式传感器7第4章电容式传感器图中C为传感器电容,Rp为低频损耗并联电阻,它包含极板间漏电和介质损耗;Rs为高湿、高温、高频激励工作时的串联损耗电组,它包含导线、极板间和金属支座等损耗电阻;L为电容器及引线电感;Cp为寄生电容,克服其影响,是提高电容传感器实用性能的关键之一,下面专门讨论。可见,在实际应用中,特别在高频激励时,尤需考虑L的存在,会使传感器有效电容图4.9电容传感器的等效电路8LCCCe21在这种情况下,每当改变激励频率或者更换传输电缆时都必须对测量系统重新进行标定。2.边缘效应以上分析各种电容式传感器时还忽略了边缘效应的影响。实际上当极板厚度h与极距δ之比相对较大时,边缘效应的影响就不能忽略。这时,对极板半径为r的变极距型电容传感器,其电容值应按下式计算:22)1(LCSSe(4-21)(4-22)第4章电容式传感器9)(116ln20hfrrrCr(4-23)边缘效应不仅使电容传感器的灵敏度降低,而且产生非线性。为了消除边缘效应的影响,可以采用带有保护环的结构,如图4.10所示。保护环与定极板同心、电气上绝缘且间隙越小越好,同时始终保持等电位,以保证中间工作区得到均匀的场强分布,从而克服边缘效应的影响。为减小极板厚度,往往不用整块金属板做极板,而用石英或陶瓷等非金属材料,蒸涂一薄层金属作为极板。第4章电容式传感器10图4.10带有保护环的电容传感器原理结构第4章电容式传感器3.静电引力电容式传感器两极板间因存在静电场,而作用有静电引力或力矩。静电引力的大小与极板间的工作电压、介电常数、极间距离有关。通常这种静电引力很小,但在采用推动力很小的弹性敏感元件情况下,须考虑因静电引力造成的测量误差。11第4章电容式传感器4.寄生电容电容式传感器由于受结构与尺寸的限制,其电容量都很小(几pF到几十pF),属于小功率、高阻抗器件,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联(见图4.9),严重影响感器的输出特性,甚至会淹没有用信号而不能使用。消灭寄生电容影响,是电容式传感器实用的关键。⑴.驱动电缆法它实际上是一种等电位屏蔽法。如图4.11所示:在电容传感器与测量电路的前置级之间采用双层屏蔽电缆,并接入增益为1的驱动放大器,(接线如图示)。12第4章电容式传感器这种接线法使内屏蔽与芯线等电位,消除了芯线对内屏蔽的容性漏电,克服了寄生电容的影响;而内、外层屏蔽之间的电容变成了驱动放大器的负载。因此驱动放大器是一个输入阻抗很高、具有容性负载、放大倍数为1的同相放大器。该方法的难处是,要在很宽的频带上严格实现放大倍数等于1,且输出与输入的相移为零。为此有人提出,用运算放大器驱动法取代上述方法。图4.11驱动电缆法原理图13⑵.整体屏蔽法以差动电容传感器Cx1、Cx2配用电桥测量电路为例,如图4.12所示;U为电源电压,K为不平衡电桥的指示放大器。所谓整体屏蔽是将整个电桥(包括电源、电缆等)统一屏蔽起来;其关键在于正确选取接地点。本例中接地点选在两平衡电阻R3、R4桥臂中间,与整体屏蔽共地。图4.12整体屏蔽法原理图第4章电容式传感器14这样传感器公用极板与屏蔽之间的寄生电容C1同测量放大器的输入阻抗相并联,从而可将C1归算到放大器的输入电容中去。由于测量放大器的输入阻抗应具有极大的值,C1的并联也是不希望的,但它只是影响灵敏度而已。另两个寄生电容C3及C4是并在桥臂R3及R4上,这会影响电桥的初始平衡及总体灵敏度,但并不妨碍电桥的正确工作。因此寄生参数对传感器电容的影响基本上被消除。整体屏蔽法是一种较好的方法;但将使总体结构复杂化。⑶.采用组合式与集成技术一种方法是将测量电路的前置级或全部装在紧靠传感器处,缩短电缆;另一种方法是采用超小型大规模集成电路,将全部测量电路组合在传感器壳体内;第4章电容式传感器15更进一步就是利用集成工艺,将传感器与调理等电路集成于同一芯片,构成集成电容式传感器。5.温度影响环境温度的变化将改变电容传感器的输出相对被测输入量的单值函数关系,从而引入温度干扰误差。这种影响主要有以下两个方面:⑴.温度对结构尺寸的影响电容传感器由于极间隙很小而对结构尺寸的变化特别敏感。在传感器各零件材料线胀系数不匹配的情况下,温度变化将导致极间隙较大的相对变化,从而产生第4章电容式传感器16第4章电容式传感器在设计电容式传感器时,适当选择材料及有关结构⑵.温度对介质的影响温度对介电常数的影响随介质不同而异,空气及云母的介电常数温度系数近似为零;而某些液体介质,如硅油、蓖麻油、煤油等,其介电常数的温度系数较大。例如煤油的介电常数的温度系数可达0.07%/℃;若环境温度变化±50℃,则将带来7%的温度误差,故采用此类介质时必须注意温度变化造成的误差。17第4章电容式传感器电容式传感器将被测非电量变换为电容变化后,必须采用测量电路将其转换为电压、电流或频率信号。4.3.1.变压器电桥如图4.13所示,C、C2为传感器的两个差动电容。电桥的空载输出电压为第三节测量电路21212CCCCUUo(4-24)18图4.13变压器电桥对变极距型电容传感器,代入上式得)/();/(002001ACAC02UUo第4章电容式传感器19可见,对变极距型差动电容传感器的变压器电桥,在负载阻抗极大时,其输出特性呈线性。4.3.2.双T二极管交流电桥如图4.14所示:U是高频电源,提供幅值为U的对称方波(正弦波也适用);D1、D2为特性完全相同的两个二极管,R1=R2=R;C1、C2为传感器的两个差动电容。当传感器没有位移输入时,C1=C2,RL在一个周期内流过的平均电流为零,无电压输出。当C1或C2变化时,RL上产生的平均电流将不再为零,因而有信号输出。其输出电压的平均值为第4章电容式传感器20第4章电容式传感器)()()2(212__CCUfRRRRRRULLLL(4-25)图4.14双T二极管交流电桥21式中:f为电源频率。当RL已知时,上式中为常数,则LLLRRRRRRK2)()2()(21__CCKUfUL(4-26)第4章电容式传感器22第4章电容式传感器该电路适用于各种电容式传感器。它的应用特点和要求:(1)电源、传感器电容、负载均可同时在一点接地;(2)二极管D1、D2工作于高电平下,因而非线性失真小;(3)其灵敏度与电源频率有关,因此电源频率需要稳定;(4)将D1、D2、R1、R2安装在C1、C2附近能消除电缆寄生电容影响;线路简单;(5)输出电压较高。4.3.3.脉冲调宽电路图4.15为一种差动脉冲宽度调制电路。23第4章电容式传感器当接通电源后,若触发器Q端为高电平(U1),端为低电平(0),则触发器通过R1对C1充电;当F点电位UF升到与参考电压Ur相等时,比较器IC1产生一脉冲使触发器翻转,从而使Q端为低电平,端为高电平(U1)。此时,由电容C1通过二极管D1迅速放电至零,而触发器由端经R2向C2充电;当G点电位UG与参考电压Ur相等时,比较器IC2输出一脉冲使触发器翻转,从而循环上述过程。图4.15差动脉冲调宽电路24第4章电容式传感器可以看出,电路充放电的时间,即触发器输出方波脉冲的宽度受电容C1、C2调制。当C1=C2时,各点的电压波形如图4.16(a)所示,Q和两端电平的脉冲宽度相等,两端间的平均电压为零。当C1>C2时,各点的电压波形如图4.16(b)所示,Q、两端间的平均电压(经一低通滤波器)为__Q__Q12121121210UCCCCUTTTTU(4-27)式中:T1和T2分别为Q端和端输出方波脉冲的宽度,亦即C1和C2的充电时间。__Q25图4.16各点电压波形图第4章电容式传感器26当该电路用于差动式变极距型电容传感器时,式(4-27)有(4-28)这种电路只采用直流电源,无需振荡器,要求直流电源地电压稳定度较高,但比高稳定度地稳频稳幅交流电源易于做到。用于差动式变面积型电容传感器时有(4-29)100UU10UAAU第4章电容式传感器27第4章电容式传感器4.3.4.运算放大器电路这种电路不需要载频和附加解调线路,无波形和相移失真;输出信号只需要通过低通滤波器引出;直流信号的极性取决于C1和C2;对变极距和变面积的电容传感器均可获得线性输出。这种脉宽调制线路也便于与传感器做在一起,从而使传输误差和干扰大大减小。图4.17为其电原理图。C1为传感器电容,它跨接在高增益运算放大器的输入端和输出端之间。放大器的输入阻抗很高(Zi→∞),因此可视作理想运算放

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功