Remeshed smoothed particle hydrodynamics for the s

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

JournalofComputationalPhysics182,67–90(2002)doi:10.1006/jcph.2002.7152RemeshedSmoothedParticleHydrodynamicsfortheSimulationofViscousandHeatConductingFlowsA.K.Chaniotis,∗D.Poulikakos,∗andP.Koumoutsakos†∗InstituteofEnergyTechnology,LaboratoryofThermodynamicsinEmergingTechnologies,ETH,Z¨urich,Switzerland;†InstituteofComputationalSciences,ETH,Z¨urich,Switzerland;andCenterforTurbulenceResearch,NASAAmes,MoffettField,California94035E-mail:poulikakos@ltnt.iet.mavt.ethz.chReceivedJuly24,2001;revisedMay9,2002Wepresentanextensionoftheclassicalschemeofsmoothedparticlehydrody-namics(SPH)fortheaccuratehandlingofdiffusiontermsinthemomentumandenergyequationofviscousandheatconductingflows.AkeyaspectofthepresentSPHapproachistheperiodicreinitialization(remeshing)oftheparticlelocations,whicharebeingdistortedbytheflowmap.High-ordermomentconservingkernelsarebeingimplementedforthisremeshingprocedureleadingtoaccuratesimulations.TheaccuracyoftheproposedSPHmethodologyistestedforanumberofbenchmarkproblemsinvolvingflowandenergytransport.Theresultsdemonstratethatthepro-posedSPHmethodologyiscapableofDNSqualitysimulationswhilemaintainingitsrobustnessandadaptivity.c2002ElsevierScience(USA)1.INTRODUCTIONThesmoothparticlehydrodynamics(SPH)methodisaLagrangiannumericalmethodintroducedbyGingoldandMonaghan[1],inordertomodelproblemsincontinuumphysicswhilecircumventingsomeofthelimitationsofgrid-basedmethods.SPHisarobustnumer-icaltechniquethathasbeenappliedtoawiderangeofproblems,rangingfromcompressiblefluidmechanicstoastrophysicssimulationsandflowstructureinteractions[1–6].AlthoughthemethodenjoysthepropertiesofLagrangianschemes,suchasautomaticadaptivityandnumericalstability,theextensionofthemethodinordertohandlediffusion-typeeffectshasbeenlimited.OneofthekeydifficultiesisthehandlingofdiffusiontypeoperatorsontheLagrangianmesh,whichisusuallydistortedbytheflowmap.Amethodologytoovercomethesedifficultiesispresentedinthispaper.ThedevelopmentoftheclassicalSPHmethodologyforcompressibleflowfieldsisde-scribedindetailbyMonaghan[7].Thecomputationalelementsareparticleswhoselocation670021-9991/02$35.00c2002ElsevierScience(USA)Allrightsreserved.68CHANIOTIS,POULIKAKOS,ANDKOUMOUTSAKOSisfollowinginaLagrangianfashiontheflowmap.Theinitialflowfieldquantitiesarein-terpolatedontheparticlelocations,andalltheflowquantitiescanbereconstructedbyalinearsuperpositionoftheflowquantitiescarriedbytheparticlesasweighedbyasmoothinterpolationkernel[8,9].Thediscreteequationsareobtainedfromcontinuumequationsbyexpressingtheflowquantitiesasalinearsuperpositionofthephysicalquantitiesthatarebeingcarriedbytheparticles.SPHbelongstoaclassofLagrangianmethodscalledparticlemethods.Thekeyadvantageofallparticlemethodsistoavoidtheexplicitdiscretizationofthenonlinearconvectiontermwhilemaintaininganautomaticadaptivityforthecomputationalelements.However,particlemethodsarefacedwithdifficultieswhendealingwiththeapproximationofviscouseffects.Theapproximationofdiffusionoperatorsinthecontextofparticlemethodsisasubjectthathasbeenextensivelyaddressedinthecontextofvortexmethodsinthelastdecade[10].Severaloptionshavebeenidentifiedsuchasthederivationofconservativeschemesbasedontheapproximationofthediffusionoperatorbyanintegraloperator[11,12],thedifferentiationofthesmoothingkernel[13],andtheapproximationofthediffusionoperatoronthedistortedLagrangiangridusingsomeaveragingprocedures[14].Inthiswork,wepresentanumericalschemetoaccountfordiffusioneffectsinthecontextofsmoothparticlehydrodynamicsbyincorporatingaremeshingstrategyfortheparticlelocationsalongwithanefficientcalculationofthediffusionoperatorsinthedistortedparticlelocations.ThefactthatviscosityplaysanimportantroleinmanyphysicalphenomenaofengineeringinterestunderlinestheneedtoimprovethemodelingofviscousforceswhilemaintainingtheadaptivityandrobustnessofSPH.AcommonlyemployedmethodologytoaccountfordiffusioneffectsinSPHistointroduceanartificialviscositysothatconservationofmomentumisensured.However,thisschemeusuallyyieldsinaccurateresults,becausetheseparationofshearandbulkviscosityisnotallowed[7,15].AnalternativeapproachtoremedythissituationisbasedonaTaylorseriesexpansionofthefieldquantitiesintheneighborhoodofeachparticleandcombinesthestandardfirst-orderSPHderivativeswiththefinitedifferencesmethod[16].ThemethodofBrookshaw[16]iscomputationallyefficient,sinceonlythefirstderivativeofthekernelisrequiredandcon-servesthelinearmomentum,whiletheangularmomentumisapproximatelyconserved.Thistypeofapproximationforthediffusiontermhasbeenimplementedsuccessfullytosimulateheatconductionproblems[6,16]andincompressibleviscousflows[5]withsolidboundariesbutitmayleadtoinaccurateresultswhenthevelocityorthedensityfieldisnoisy[15].AnotherapproximationofviscouseffectsinSPHinvolvesthenestedapplicationofthedifferenceapproximationthuscalculatingsecond-orderderivativesfromfirstderivatives[15,17].Thismethodcancalculateanysecondderivativeinsuchawaythattheformulasaresymmetricandtheyconservethelinearandangularmomentum.However,thismethodisnotcomputationallyefficientasitwouldimplyrepeatedcalculationsinvolvingallparticlesandmi

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功