pacificjournalofmathematicsVol.177,No.2,1997ONFUSIONALGEBRASASSOCIATEDTOFINITEGROUPACTIONSHidekiKosaki,AkihiroMunemasaandShigeruYamagamiInourpreviouspaper(seeKosakiandYamagami),fourkindsofbimodulesnaturallyattachedtocrossedproductsPoG PoHdeterminedbyagroup-subgrouppairG Hwereidenti edwithcertainvectorbundlesequippedwithgroupactions.Inthepresentpaperwewilldescribethestruc-tureofthefusionalgebraofvectorbundlesandclarifyarela-tionshiptofusionalgebrasappearinginothercontexts.Someapplicationstoautomorphismanalysisforsubfactorswillbealsogiven.1.Introduction.Thenotionofbimodules(forvonNeumannalgebras)wasintroducedbyA.Connesandhasprovedveryusefulinmanyplacesinthetheoryofoperatoralgebras.TheJonesindextheory(andsubsequentsubfactoranalysis)isnoexception.Agivenfactor-subfactorpairM N(of niteindex)naturallyprovidesuswithfourkindsofbimodules(i.e.,M-M,M-N,N-M,N-Nbimodules)viathebasicconstruction.ThesebimodulesareknowntocontainenormousamountofinformationonthepairM N,andhencestudyonbimodulesisindispensableforsubfactoranalysis.Forexample,knowinghowtensorproductssplitintoirreduciblebimodules(i.e.,fusionrule)isveryuseful.Animportantexampleoffactor-subfactorpairsisthecrossedproductpairM=PoG N=PoHarisingfromagroup-subgrouppairG H.Inthiscase,thefourkindsofbimodulesandtheinduction-restrictionprocedureforthem(i.e.,theprincipalandthedualprincipalgraphs([8]))canbeexplicitlydescribedintermsoftherepresentationtheoryforthepairG H(i.e.,theMackeymachine).Actually,inourpreviouspaper[22],viaacertaincrossedproductconstructionatensorcategoryofvectorbundleshavinggroupsasbasespaceswithbivariantactionsofsubgroupswasintroduced.Wethenshowedthat(basedontheouternessofanactioninquestion)thiscanbeidentifedwiththecategoryoftheabovementionedbimodules,andhencestudyofbimoduleswascompletelyreducedtothatinrepresentationtheory(seex2).269270H.KOSAKI,A.MUNEMASAANDS.YAMAGAMIThefusionruleforM-Mbimodulesisquiteeasyinthegroup-subgroupcase,andthepurposeofthepresentpaperistodeterminemuchmoresubtlefusionruleforN-Nbimodulestogetherwithsomeapplicationstothestudyonautomorphismsforsubfactors.ItturnsoutthatthefusionalgebraforN-NbimodulesisessentiallythesameasthealgebraofHeckeoperatorsconsideredbyT.Yoshida([40,41]).Wegiveaconcretedescriptionofthefusionalgebrabasedon[28],revealingtheabstractstructureasasemi-simplealgebra.MotivatedmainlybyVerlinde’swork([34]),fusionalgebrasinseveralcontextshavebeeninvestigatedsofar.Amongthese,thefusionalgebraoftheorbifoldmodelappearingin[5](seealso[1,2,27,35])withthetrivial3-cocycleisaspecialcaseofourfusionalgebraofvectorbundles,whereG=H HwiththediagonallyimbeddedH.Inx3weobtainamultiplicityformulaforanirreduciblebundleinthetensorproductofbundlesinquiteageneralsetting.Inx4westudythefusionalgebraofvectorbundlesandobtainaconcreterealizationofthisalgebra.Wealsopointoutthatthefusionalgebraoftheasymptoticinclusion(see[30])ofR0oG R0(whereR0isthehyper niteII1factor)isthecenterofthequantumdouble([6])ofthegroupHopfalgebra‘1(G).Thisfactforthefusionalgebraarisingfromanorbifoldmodel([1,2,5])isprobablyknowntoseveralpeople,especiallytoM.Wakui([35],seealso[4]).Then,inx5weidentifyelementsinthefusionalgebrawithoperatorsactingonacertaincharacterring(consideredin[40,41]).Thisenablesustoexpressthetensorproductveryexplicitlyintermsofrelevantrepresentations.Insubfactoranalysis,certaingroupsofautomorphismswithspecialpropertiesnaturallyappear(i.e.,forexamplethegroupofnon-stronglyouterautomorphisms([3,19,32]))andtheyareknowntoberelatedtoanalysisonbimodules.Inthe nalx6,weexplicitlywritedownthesegroupsforaninclusionof xed-pointalgebrafactors.Throughoutthepaperwefollowthenotationsandde nitionsinourpre-viouspaper[22](whicharesummarizedinx2)whilebasicfactsontheindextheorycanbefoundintheoriginalarticles[8,14,18].TheauthorsaregratefultoY.Kawahigashiforinformingthemof[7,16]inpreparation.2.Preliminaries.Inthissectionwebrie yrecallbasicde nitionsandresultsin[22]partlyto xournotations.2.1.VectorBundles.Let beadiscretegroup,andits nitesubgroupswillbedenotedbyG;H;K; .Theunitinthegroup willbedenotedby1throughoutthepaper.ByanH-KvectorbundleV(=HVK)wealwaysmeanavectorbundleofHilbertspacesoverthebasespace withleftH-FUSIONALGEBRAS271andrightK-actionswhichextendthenaturalleftH-andrightK-actionsonthebasespaceandpreserveinnerproducts(in breHilbertspaces).Weallowsomeof bresVgtobetrivial,ands(V)=fg2 ;Vg6=f0ggiscalledthesupportofV.Thedirectsumandtheadjointbundlearede nedinthenaturalway(V =K(V )Hwith(V )g=(Vg 1) ,thedualspace)whilethetensorproductisde nedasfollows:LetV;WbeG-H,H-Kbundlesrespectively.TheoutertensorproductV Wover admitstheH-actionh (v w)=(vh 1) (hv):Hence,wegetthequotientbundleV HWoverthequotientspace H of .TheproductbundleV HW=G(V HW)Kisde nedasthepushforwardofV HWviathemapp:g Hg02 H !gg02 .Hence,weget(V HW)g=Ma Hb2p 1(g)(Va HWb);andwehavethenaturalG-Kactionfromtheoutside.ForH-KbundlesV;W,abundlehomomorphismT:V !WsatisfyingT(Vg) Wgforeachg2 iscalledan(H-K)gaugetransformation,andthesetofallgaugetransformationsisdenotedbyHom(V;W)(andHom(V;V)=Hom(V)asusual).AbundleVisirre