On learning gene regulatory networks under the Boo

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

OnLearningGeneRegulatoryNetworksUndertheBooleanNetworkModelHarriLahdesmakiInstituteofSignalProcessing,DigitalMediaInstitute,TampereUniversityofTechnology,P.O.Box553,FIN-33101Tampere,FinlandTel:+358331154705Fax:+358331153817(harri.lahdesmaki@tut.fi)IlyaShmulevichUniversityofTexasM.D.AndersonCancerCenter,1515HolcombeBlvd.,Box85,Houston,TX77030,USA(is@ieee.org)OlliYli-HarjaInstituteofSignalProcessing,DigitalMediaInstitute,TampereUniversityofTechnology,P.O.Box553,FIN-33101Tampere,Finland(yliharja@cs.tut.fi)Abstract.Booleannetworksareapopularmodelclassforcapturingtheinter-actionsofgenesandglobaldynamicalbehaviorofgeneticregulatorynetworks.Recently,asigni cantamountofattentionhasbeenfocusedontheinferenceoridenti cationofthemodelstructurefromgeneexpressiondata.WeconsidertheConsistencyaswellasBest-FitExtensionproblemsinthecontextofinferringthenetworksfromdata.Thelatterapproachisespeciallyusefulinsituationswhengeneexpressionmeasurementsarenoisyandmayleadtoinconsistentobservations.WeproposesimpleecientalgorithmsthatcanbeusedtoanswertheConsistencyProblemand ndoneorallconsistentBooleannetworksrelativetothegivenexam-ples.ThesamemethodisextendedtolearninggeneregulatorynetworksundertheBest-FitExtensionparadigm.Wealsointroduceasimpleandfastwayof ndingallBooleannetworkshavinglimitederrorsizeintheBest-FitExtensionProblemsetting.Weapplytheinferencemethodstoarealgeneexpressiondatasetandpresenttheresultsforaselectedsetofgenes.Keywords:generegulatorynetworks,networkinference,ConsistencyProblem,Best-FitExtensionParadigmCorrespondingauthorc2002KluwerAcademicPublishers.PrintedintheNetherlands.BNLearnRev.tex;5/11/2002;17:36;p.12Lahdesmaki,H.,Shmulevich,I.,andYli-Harja,O.1.INTRODUCTIONAcentralfocusofgenomicresearchconcernsunderstandingthemannerinwhichcellsexecuteandcontroltheenormousnumberofoperationsrequiredfornormalfunctionandthewaysinwhichcellularsystemsfailindisease.Inbiologicalsystems,decisionsarereachedbymethodsthatareexceedinglyparallelandextraordinarilyintegrated.Animportantgoalistounderstandthenatureofcellularfunctionandthemannerinwhichgenesandandtheirproductscollectivelyformabiologicalsystem.Incontrasttothereductionisticapproachesinbiology,itisbecomingincreasinglyapparentthatitisnecessarytostudythebe-haviorofgenesinaholisticratherthaninanindividualmanner.Suchapproachesinevitablyrequirecomputationalandformalmethodstoprocessmassiveamountsofdata,tounderstandgeneralprinciplesgov-erningthesystemunderstudy,andtomakeusefulpredictionsaboutsystembehaviorinthepresenceofknownconditions.Asigni cantroleisplayedbythedevelopmentandanalysisofmathematicalandcomputationalmethodsinordertoconstructformalmodelsofgeneticinteractions.Thisresearchdirectionprovidesinsightandaconceptualframeworkforanintegrativeviewofgeneticfunctionandregulationandpavesthewaytowardunderstandingthecomplexrelationshipbetweenthegenomeandthecell.Anumberofdi erentapproachestogeneregulatorynetworkmod-elinghavebeenintroduced,includinglinearmodels(D'Haeseleeretal.,1999),Bayesiannetworks(MurphyandMian,1999;Friedmanetal.,2000;Harteminketal.,2001),neuralnetworks(Weaveretal.,1999;Vohradsky,2001),di erentialequations(Chenetal.,1999;Mestletal.,1995),andmodelsincludingstochasticcomponentsonthemolec-ularlevel(McAdamsandArkin,1997)(see(Smolenetal.,2000;Hastyetal.,2001;deJong,2002)forreviewsofgeneralmodels).AmodelclassthathasreceivedaconsiderableamountofattentionistheBooleannet-work(BN)modeloriginallyintroducedbyKau man(Kau man,1969;GlassandKau man,1973).Goodreviewscanbefoundin(Huang,1999;Kau man,1993;SomogyiandSniegoski,1996).Inthismodel,thestateofageneisrepresentedbyaBooleanvariable(ONorOFF)andinteractionsbetweenthegenesarerepresentedbyBooleanfunctions,whichdeterminethestateofageneonthebasisofthestatesofsomeothergenes.Recentworksuggeststhatevenwhengeneexpressiondataareanalyzedentirelyinthebinarydomain(onlytwoquanti-zationlevels),meaningfulbiologicalinformationcanbesuccessfullyextracted(ShmulevichandZhang,2002c;Tabusetal.,2002).OneoftheappealingpropertiesofBNsisthattheyareinherentlysimple,empha-sizinggenericnetworkbehaviorratherthanquantitativebiochemicalBNLearnRev.tex;5/11/2002;17:36;p.2OnLearningGeneRegulatoryNetworks3details,butareabletocapturemuchofthecomplexdynamicsofgeneregulatorynetworks.MostoftherecentworkonBooleannetworkshasfocusedonidenti-fyingthestructureoftheunderlyinggeneregulatorynetworkfromgeneexpressiondata(Liangetal.,1998;Akutsuetal.,1998;Akutsuetal.,1999;Idekeretal.,2000;Karpetal.,1999;Makietal.,2001;Nodaetal.,1998;Shmulevichetal.,2002b).Arelatedissueisto ndanetworkthatisconsistentwiththegivenobservationsordeterminewhethersuchanetworkexistsatall.ThisisknownastheConsistencyProblem(seeSection3.1).TheConsistencyProblemhasbeenaddressedandalgorithmssolvingtheproblemhavebeenintroducedin(Akutsuetal.,1998;Akutsuetal.,1999).Ontheotherhand,onemayarguethatthesimpleConsistencyProblemcannotbeusedtoinferanetworkfromrealdata.Thatis,duetothecomplexmeasurementprocess,rangingfromhybridizationconditionstoimageprocessingtechniques,expressionpatternsexhibituncertainty.Forexample,

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功