DépartementdeMathématiquesetInformatiqueCNRSURA762________________________________________________UPERIEURESORMALENECOLEAsymptoticBehaviorofSolutionsofanAllen-CahnEquationwithaNon-localTermXinfuCHENDanielleHILHORSTElisabethLOGAKLMENS-95-4AsymptoticBehaviorofSolutionsofanAllen-CahnEquationwithaNon-localTermXinfuCHEN DanielleHILHORST ElisabethLOGAKLMENS-95-4March95LaboratoiredeMath ematiquesdel’EcoleNormaleSup erieure45rued’Ulm75230PARISCedex05Tel:(33)(1)44320000Adresse electronique:..@dmi.ens.fr DepartmentofMathematics,UniversityofPittsburgh Laboratoired’AnalyseNum erique,CNRSUniversit eParis-Sud(B^at425)91405ORSAYCedexAsymptoticbehaviorofsolutionsofanAllen-Cahnequationwithanon{localterm XinfuChenxDanielleHilhorst{ElisabethLogakkAbstractWeconsideranAllen-Cahnequationinvolvingaspatialaverageterm,whicharisesasasingularlimitofareaction-di usionsystemmodellingphasetransi-tion.Weshowthatthesolutionofthisequationconvergestoastepfunctiontakingvalues 1onbothsidesofamovinginterface.Thenormalvelocityoftheinterfaceisgivenbythesumofmeancurvatureandofsomenon-localtermdependingonthevolumedelimitedbytheinterface.Weproveexistenceanduniquenessofasmoothsolutionofthisfree-boundaryproblemlocallyintime.KEYWORDS.Allen-Cahnequation-Integro-di erentialequations-Singularlimit-Propagationofinterfaces.1Introduction.Inthispaper,westudythelimitingbehavior,as&0,ofthesolutionuofthefollowingproblem(P)8:ut= u+12f(u;Z u)in IR+;@u@n=0on@ IR+;u(x;0)=g(x)x2 ;(1.1)where IRN(N 2)isasmoothboundeddomainandnistheunitoutwardnormalto@ .Weassumethatf(u;v)issmoothandthat~f(u)=f(u;0)isthe TheauthorsareverygratefultoProfessorY.Nishiuraformanystimulatingdiscussions.xDepartmentofmathematics,UniversityofPittsburgh,Pittsburgh,PA15260,USA.PartiallysupportedbytheNationalScienceFoundationGrantDMS{9200459andtheAlfredP.SloanResearchFellowship.PartofthisworkwasdoneduringavisittotheUniversityofParis-Sud.{Laboratoired’AnalyseNum erique,CNRSetUniversit eParis-Sud,B^atiment425,91405Orsay,FRANCE.kD epartementdeMath ematiquesetd’Informatique,EcoleNormaleSup erieure,45,rued’Ulm75230ParisCedex05,FRANCE.1oppositeofthederivativeofadoubleequalwellpotentialtakingitsglobalminimumvalue0atu= 1;moreprecisely,weassumethat~f(u)hasthefollowingproperties:~f( 1)=0;~f0( 1)0;Z1 1~f(s)ds=0(1.2)andthereexistsauniquevaluea2( 1;+1)suchthat~f(a)=0(1.3)with~f0(a)0:(1.4)Atypicalexampleis~f(u)=u u3andf(u;v)=~f(u)+vh(u).Whenf(u;v)isindependentofv,i.e.,f(u;v)=~f(u),equation(??a)reducestotheAllen{Cahnequation[?]modellinganantiphaseboundarymotionandantiphasedomaincoarsening.ThemainfeatureofthesolutionoftheAllen{Cahnequationisthatthezerolevelsetofthesolutionapproximates(as!0)themotionbymeancurvature ow.FormalderivationofthisconnectionwascarriedoutbyAllen{Cahn[?],Rubinstein,Sternberg,andKeller[?],Fife[?]andmanyothers.Rigorousjusti- cationwassuccessfullycarriedoutrecentlybyBronsardandKohn[?],deMottoniandSchatzman[?][?],Chen[?],Evans,SonerandSouganidis[?],Ilmanen[?]andmanyothers.Problem(P)isobtainedasthelimit,as &0and &0,ofthefollowingsystemofreaction-di usionequations(ut= u+12f(u;j j v)in IR+; vt=1 v+u 1 vin IR+(1.5)withappropriateinitialandboundaryconditions,whereand are xedpositiveconstants.(Seex4forarigorousjusti cation.)Thesystem(??)isusuallyreferredasaBelousov{Zhabotinskiimodel(orFitzHugh{Nagumomodelwhen =1)whichdescribes,forinstance,wavepropagationinexcitablemedia,patternformationinpopulationgenetics,propagationofsignalsalonganerveaxonorcardiactissue,etc,andhasbeenextensivelystudied;see,forexample,NishiuraandMimura[?],OhtaandKawasaki[?],FifeandTyson[?],Fife[?],andthereferencetherein.For xedpositiveconstants ; ;and ,thelimitingbehavior,as!0,ofsolutionsoftheparabolicsystem(??)wasrecentlystudiedbyX.Chen[?]andX-Y.Chen[?].Itiswell{knownthatthemotionbymeancurvature owdoesnothavenon{trivialstationarypatternsthatdonotattach@ .Infact,incase =IRN,everyinitiallyboundedhypersurfaceshrinksintopointsin nitetime;see,forexample,EvansandSpruck[?].However,forequation(??a),thereisanon{localtermrepresentedbytheintegralofu,whichprovidesdynamicsfortheformationofnon{trivialstationarypatterns.Hence,thesolutionsofProblem(P)providesricherstructurethanthatoftheAllen{Cahnequation.2Wenowstatethemainresultofthispaper.Theorem1.1.Assumethatf(u;v)2C2([ 2;2] [ 1;1])andthat~f(u):=f(u;0)satis es(??).Let 0 beagivensmoothclosedhypersurfacewhichseparates intotwodomains +0and 0.Let :=[0 t T t ftgbeafamilyofsmoothhypersurfacesthatmovesaccordingtothelaw(V= K+c0(j +tj j tj); tjt=0= 0(1.6)whereVisthenormalvelocityof t(positiveif tisexpanding),Kisthemeancurvatureof t(positiveif tisconvex),c0iscertainconstantthatdependsonlyonf(cf(??)inx3), tistheregionenclosedby t, +t= n( t[ t),andjAjisthemeasureofthesetA.Assumethat t forall0 t T .Thenthereexistsafamilyofcontinuousfunctionsfgg0 1suchthatthesolutionuofproblem(P)withinitialdatagsatis eslim!0u(x;t)= 18x2 t;t2[0;T ]:Actually,astrongerresultthanTheorem1.1willbeproved.Theideaoftheproofistoconstructsub{supersolutionpairsandtouseacomparisonprinciple.Weshallestablishthee