《采矿学》课程设计1绪论一、目的1、初步应用《采矿学》课程所学的知识,通过课程设计加深对《采矿学》课程的理解。2、培养采矿工程专业学生的动手能力,对编写采矿技术文件,包括编写设计说明书及绘制设计图纸进行初步锻炼。3、为毕业设计中编写毕业设计说明书及绘制毕业设计图纸打基础。二、设计题目1、设计题目的一般条件某矿第一开采水平上山某采(带)区自下而上开采K1、K2和K3煤层,煤层厚度、层间距及顶底板岩性见综合柱状图。该采(带)区走向长度3600米,倾斜长度1100米,采(带)区内各煤层埋藏平稳,地质构造简单,无断层,K1和K2煤层属简单结构煤层,硬度系数f=2,各煤层瓦斯涌出量也较小。设计矿井的地面标高为+30米,煤层露头为-30米。第一开采水平为该采(带)区服务的一条运输大巷布置在K3煤层底版下方25米处的稳定岩层中,为满足该采(带)区生产系统所需的其余开拓巷道可根据采煤方法不同由设计者自行决定。2、设计题目的煤层倾角条件(1)设计题目的煤层倾角条件1煤层倾角条件1:煤层平均倾角为12°(2)设计题目的煤层倾角条件2煤层倾角条件2:煤层平均倾角为16°三、课程设计内容1、采区或带区巷道布置设计;2、采区中部甩车场线路设计或带区下部平车场(绕道线路和装车站线路)线路设计;《采矿学》课程设计2设计采(带)区综合柱状图柱状厚度(m)岩性描述————————————————8.60灰色泥质页岩,砂页岩互层---------------------------------------------------8.40泥质细砂岩,碳质页岩互层0.20碳质页岩,松软3.5K1煤层,=1.30t/m3-----------------------------------4.20灰色砂质泥岩,细砂岩互层,坚硬------------------------------------------7.80灰色砂质泥岩0.2-0.5K2煤层-----------------------------------------4.60薄层泥质细砂岩,稳定················3.20灰色细砂岩,中硬、稳定2.50K3煤层,煤质中硬,=1.30t/m3。。。。。。。。。。。。。。。。。。3.50灰白色粗砂岩、坚硬、抗压强度60—80Mps。。。。。。。。。。。。。。。。。。24.68灰色中、细砂岩互层四、进行方式学生按设计大纲要求,任选设计题目条件中的煤层倾角条件1或煤层倾角条件2,综合应用《采矿学》所学知识,每个人独立完成一份课程设计。《采矿学》课程设计3设计者之间可以讨论、借鉴,但不得相互抄袭,疑难问题可与指导教师共同研究解决。本课程设计要求方案进行技术分析与经济比较。第一章.采区巷道布置第一节.区储量与服务年限1.1.1采区生产能力选定为120万t/a1.1.2.采区的工业储量、设计可采储量(1)采区的工业储量Zg=H×L×(m1+m2+m3)×γ(公式1-1)式中:Zg----采区工业储量,万t;H----采区倾斜长度,1100m;L----采区走向长度,3600m;γ----煤的容重,1.30t/m3;m1----K1煤层煤的厚度,为3.5米;m2----K2煤层煤的厚度,为0.2-0.3米,取平均0.35米;m3----K3煤层煤的厚度,为2.50米;Zg=1100×3600×(3.5+0.35+2.50)×1.3=3268.98万tZg1=1100×3600×3.5×1.3=1801.8万tZg2=1100×3600×0.35×1.3=180.18万tZg3=1100×3600×2.50×1.3=1287万t(2)设计可采储量ZK=(Zg-p)×C(公式1-2)式中:ZK----设计可采储量,万t;Zg----工业储量,万t;p----永久煤柱损失量,万t;C----采区采出率,厚煤层可取75%,中厚煤层取80%,薄煤层85%。本设计条件下取80%。永久保护煤柱:(采区边界永久煤柱损失量和上山煤柱损失。采区两边边界保护煤柱取10米,采取上部边界煤柱取20米保护煤柱下部边界取30米保护煤柱;上山之间煤柱取20保护煤柱米上山两侧煤柱各取去30米保护煤柱)Pm1=20×3600×3.5×1.3+30×3600×3.5×1.3+10×2×(1100-20-30)×3.5×1.3+30×2×(1100-20-30)×3.5×1.3+20×(1100-20-30)×3.5×1.3=129.6750万tPm2=20×3600×0.35×1.3+30×3600×0.35×1.3+10×2×(1100-20-30)×0.35×1.3+30×2×(1100-20-30)×0.35×1.3+20×(1100-20-30)×0.35×1.3=12.9675万t《采矿学》课程设计4Pm3=20×3600×2.5×1.3+30×3600×2.5×1.3+10×2×(1100-20-30)×2.5×1.3+30×2×(1100-20-30)×2.5×1.3+20×(1100-20-30)×2.5×1.3=92.625万t采区设计可采储量:ZK1=(Zg1-p1)×C1=(1801.8-129.6750)×0.75=1254.093万tZK2=(Zg2-p2)×C2=(180.18-12.9675)×0.85=142.131万tZK3=(Zg3-p3)×C3=(1287.00-92.625)×0.80=955.5万t1.1.3采区服务年限:T=ZK/A×K——(公式1-3)式中:T----采区服务年限,a;A----采区生产能力,150万t;ZK----设计可采储量,2315.7万t;K----储量备用系数,取1.3。T1=ZK1/A×K=1254.093万t/(120万t×1.3)=8.04aT2=ZK2/A×K=142.131万t/(120万t×1.3)=0.91aT3=ZK3/A×K=955.5万t/(120万t×1.3)=6.13aT=T1+T2+T3=8.04+0.91+6.13=15.08a,取15年。1.1.4、验算采区采出率1、对于K1厚煤层:C1=(Zg1-p1)/Zg1-----(公式1-4)式中:C-----采区采出率,%;Zg1----K1煤层的工业储量,万t;p1----K1煤层的永久煤柱损失,万t,;C1=(Zg1-p1)/Zg1=(1801.8-129.675)/1801.8=92.80%75%满足要求2、对于K2中厚煤层:C2=(Zg3-p3)/Zg3-----(公式1-5)式中:C----采区采出率,%;Zg2----K2煤层的工业储量,万t;P2----K2煤层的永久煤柱损失,万tC2=(Zg2-p2)/Zg2=(180.18-12.9675)/180.18=92.80%80%满足要求3、对于K3中厚煤层:C3=(Zg3-p3)/Zg3-----(公式1-5)式中:C----采区采出率,%;Zg3----K3煤层的工业储量,万t;P3----K3煤层的永久煤柱损失,万t,;C3=(Zg3-p3)/Zg3《采矿学》课程设计5=(1287-92.625)/1287=92.8080%满足要求第二节采区内的再划分1.2.1、确定工作面长度由已知条件知:该煤层左右边界各有10m的边界煤柱,上部留20m防水煤柱,下部留30m护巷煤柱,故其煤层倾向共有:1100-50=1040m的长度,走向长度3600-30×2-20-10×2=3500m。地质构造简单,煤层附存条件较好,瓦斯涌出量小。且现代工作面长度有加长趋势,且采煤工艺选取的是较先进的综采。又知,一般而言,考虑到设备选型及技术方面的因素综采工作面长度为180~250m,巷道宽度为4m~4.5m,本采区选取4.5m,且采区生产能力为120万t/a,一个中厚煤层的一个工作面便可以满足生产要求,采用沿空掘巷方式,巷道间留较小煤柱,取5米.取区段平巷的宽度为4.5m,留5m小煤墙。则采煤工作面长度为:L1=(b-q-((2×L2+p)×n-p))/n(公式1-5)式中:L1——工作面长度,m;L2——区段平巷宽度,m;b——采区倾向长度,m;q——采区上下边界预留煤柱宽度,m;P——护巷煤柱宽度,m;n——区段数目,个;L1=(1100-20-30-((4.5+5)×5)-4.5)/5=199.6m工作面长度取200米1.2.2、工作面生产能力Qr=A/(T×1.1)(公式1-6)式中:A----采区生产能力,120万t/a;Qr----工作面生产能力,t/天;T----每a正常工作日,330天。故:Qr=A/(T×1.1)=120/(330×1.1)=3305.78t1.2.3工作面接替顺序目前,煤炭企业生产系统向高产高效集中化生产的方向发展,新建大型化矿井均朝“一矿一井一面”的设计思想改革,采用提高工作面单产,用一个工作面的产量来保证整个矿井的设计生产能力,故为适应现阶段煤炭行业的知道规范,本采区《采矿学》课程设计6设计一个采煤工作面。其工作面接替顺序如下表:对于K1煤层:1101停采线80m110211031104110511061107110811091110K1煤层工作面接替顺序:1101→1102→1103→1104→1105→1106→1107→1108→1109→1110对于K3煤层:3101停采线80m310231033104310531063107310831093110K3煤层工作面接替顺序:3101→3102→3103→3104→3105→3106→3107→3108→3109→3110注:箭头表示回采工作面的接替顺序。第三节确定采区内准备巷道布置和生产系统1.3.确定采区内准备巷道布置和生产系统1.3.1完善开拓巷道为了减少煤柱损失提高采出率,利于灭灾并提高经济效益,根据所给地质条件及采矿工程设计规划,在第一开采水平中,把为该采区服务的运输大巷回风大巷布置在K3煤层底板下方25m的稳定岩层中,回风大巷布置采区上部边界。1.3.2确定巷道布置系统首先确定回采巷道布置方式,由于地质构造简单,无断层,煤层赋存条件好,涌水量较小,瓦斯涌出量较小,无自然发火倾向,直接顶较厚且易跨落。同时为减少煤柱损失,提高采出率,降低巷道维护费用,采用沿空掘巷的方式。因此采用工作面布置图所示工作面接替顺序,就能弥补沿空掘巷时工作面接替复杂的缺点。采区布置方案分析比较确定采区巷道布置系统,采区内有三层煤,采用联合布置,根据相关情况初步制定以下三个方案进行比较:《采矿学》课程设计7方案一:采区上山联合布置两条岩石上山在距K3煤层底板15m处岩石中布置两条岩石上山,一条为运输上山,另一条为轨道上山,两上山层位有一定差距,使其分别联结两翼的区段;平巷不交叉;石门联系各煤层。通风路线:新风从阶段运输大巷→采区主石门→采区下部车场→轨道上山→中部甩车场→区段轨道集中平巷→区段联络巷道→区段运输平巷→工作面→区段回风平巷→回风石门→阶段回风大巷。该方案的特点是:岩石工程量大,掘进费用高,联络石门长,但维护条件好,维护费用低,有利于通风,运输能力大。方案二:采区上山联合布置两煤层上山在K3煤层中布置另一条轨道上山一条运输上山。通风路线:新风从阶段运输大巷→采区主石门→采区下部车场→轨道上山→中部甩车场→区段轨道集中平巷→区段联络巷道→区段运输平巷→工作面→区段回风平巷→回风石门→阶段回风大巷。该方案的特点是:采用两条煤层上山,工程量小,初期投资少但上山不易维护,维护费用高,需要保护煤柱。方案三:采区上山联合布置一煤一岩上山在距K3煤层底板15m处岩石中布置一条岩石运输上山,在K3煤层中布置另一条轨道上山,石门联系各煤层。通风路线:新风从阶段运输大巷→采区主石门→采区下部车场→轨道上山→中部甩车场→区段轨道集中平巷→区段联络巷道→区段运输平巷→工作面→区段回风平巷→回风石门→阶段回风大巷。该方案的特点是:节省了一条岩石上山,相对减少了岩石工程量,但轨道上山不易维护,维护费用高,需要保护煤柱。在K3煤