The Weighted RieszGalerkin Method for Elliptic Bou

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

TheWeightedRiesz­GalerkinMethodforEllipticBoundaryValueProblemsonUnboundedDomainsHae­SooOhy1,BongsooJangandYichungJouDept.ofMathematics,UniversityofNorthCarolinaatCharlotte,Charlotte,NC28223­0001E­mail:hso@uncc.edu,bsjang@math.uncc.eduKeyWords:MethodofAuxiliaryMapping,thep­VersionoftheFiniteElementMethod,WeightedRiesz­GalerkinMethod,WeightedSobolevSpace,InfiniteElements.RecentlyBabuˇska­OhintroducedtheMethodofAuxiliaryMapping(MAM)whichefficientlyhandlesellipticboundaryvalueproblemscontainingsingulari­ties.Inthispaper,theWeightedRiesz­GalerkinMethod(WRGM)isinvestigatedbyintroducingspecialweightfunctions.Togetherwiththismethod,MAMismodifiedtoyieldhighlyaccuratefiniteelementsolutionstogeneralellipticboundaryvalueproblemsontheexteriorofboundeddomainsatlowcost.1.INTRODUCTIONInthispaper,weintroduceanewapproachtodealwithageneralellipticboundaryvalueproblemoftheform€nXi;j=1@@xj(aij(x)@u(x)@xi)+b(x)u(x)=f(x)onanunboundeddomainΩwhichisanexteriorofaboundeddomain.Overtheyears,relatedtotheFiniteElementMethod(FEM)([9],[29]),muchworkhasbeendoneonunboundeddomainproblems([1],[9],[11],[12],[14],[15],[22],[28]).Severalnumericalmethodsfortheseproblemsweresuggested.Thefollowingapproachesarethemosttypical:truncatingtheunboundedpartofthedomainandintroducinganartificialboundaryconditionontheresultingartificialboundary;couplingboundaryelementmethodwithFEM([19]);andusinginfiniteelements([6],[7],[8],[31]).ThebasicideaoftheseapproachesistodividethegivenunboundeddomainΩintotwoparts:theboundedpartΩc=fx2Ω:jxj”cgandtheunboundedpartΩ1=ΩnΩc.In([16],[17],[18],[20],[22]),undertheassumptionthatf(x)=0onΩ1,artificialboundaryconditionsweresetupfortheartificialboundariesoftheremainingbounded1ThisresearchissupportedinpartbyNSFgrantINT­9722699.12OH,JANGANDJOUdomainΩc.Thus,theseapproachesarenotapplicableunlessf(x)hascompactsupport.Moreover,thisisimpracticalifthesupportoff(x)isverylarge.In([6],[7],[8],[31]),Ω1ispartitionedintoafinitenumberofinfiniteelementsincorporatedwiththemeshesonΩc.Thenthespecialdecayshapefunctionsareconstructedforthoseinfiniteelements.Thus,theimplementationofthismethodinaFEMcodeleadstoanalterationofthestructureofthestandardFEMcode.Thenewmethodintroducedinthispaper,similartotheinfiniteelementapproach,doesnothavethesedifficulties.First,weintroduceanauxiliarymappingthatcantransformΩ1ontoaboundeddomainˆΩ1;theunitball.ThenweapplythestandardFEMtoΩc[ˆΩ1(likeonepointcompactificationofΩforFEM).ThenoveltyofourmethodisthatnoartificialboundariesarecreatedandnoalterationofanyexistingFEMcodeisrequiredforitsimplementation.Thenumericalexamplesshowthatourmethodiseffectiveinhandlingunboundeddomainproblems.Moreover,themethodyieldshighlyaccuratenumericalsolutionsatlowcost.Thispaperisorganizedasfollows:Insection2,acut­offweightfunction,whichmakestheweightedSobolevspacebeingtheusualoneontheboundedsub­domainΩc,isintroduced.Also,theWeightedRiesz­GalerkinMethod(WRGM)isintroducedandtheexistenceofasolutionoftherelatedvariationalproblemisproved.Insection3,anauxiliarymappingisconstructedtodealwiththeunboundedsubdomainΩ1.Thenewapproachdealingwithunboundeddomainproblemsisdescribedintheframeworkofthep­versionofFEM.Insection4,theefficiencyofthemethodistestedwithvarioustypesofellipticboundaryvalueproblemsontheexteriorboundeddomainsforthecaseswhensupportsoff(x)arenotbounded.Foraclearerpresentationofthemethod,proofsoftechnicallemmas,usedintheorydevelopmentandnumericalexperiments,wereplacedinappendix.Themethodisalsoapplicabletoelasticityproblemsonunboundeddomains([26]).2.THEWEIGHTEDRIESZ­GALERKINMETHODThroughoutthispaperٚRndenotesanunboundeddomainwhichistheexteriorofaclosedboundeddomainenclosedbyasimpleclosedcurveΓ(see,Fig.1).jxj=(x21+:::+x2n)12,x2Ω:Theng:Ω€![0;1];isasmoothcutofffunctionsatisfyingthefollowingproperties:(i)g(x)=0onΩc=fx2Ω:jxjcg,(ii)g(x)=1onx2ΩnΩc+b=fΩ:jxjc+bg;b0:bisselectedsothatjrgjisassmallaspossible.Forconvenienceofcoding,theconstructionofaspecificcut­offfunctionisgiveninappendix1.Definition2.1.LetthespaceHk(Ω;–;g),withk•0aninteger,betheBanachspaceofallfunctionsu(x)suchthatkuk2Hk(Ω;–;g)=ZΩe€2–g(x)jxjX0”j‹j”k[D‹u(x)]2dx1;where‹isthemulti­index,thatis,‹=(‹1;‹2;:::;‹n)2(N+0)n,N+0:=thesetofnon­negativeintegers.j‹j=‹1+‹2+:::+‹n;D‹=@j‹j(@x1)‹1:::(@xn)‹n.Here–isELLIPTICBOUNDARYVALUEPROBLEMSONUNBOUNDEDDOMAINS3anonnegativerealnumber,whichisœ1andwillbedeterminedlater.For–=0,onegetstheusualSobolevspace.Inparticular,H0(Ω;–;g)=L2(Ω;–;g):Itisconvenienttoemploytheoperatorsr,div,andΔ.Thesearedefinedbyru=(@u@x1;:::;@u@xn)T,whereTmeanstranspose,div(f)=Pni=1@fi@xi,wheref=(f1;:::;fn)T;andΔu=div(ru):2.1.WeightedResidueMethodLetusconsiderageneralsecondorderellipticboundaryvalueproblem,€X@@xj(aij(x)@u(x)@xi)+b(x)u(x)=f(x)inΩ;(1)u(x)=0onΓ;(2)wheref2L2(Ω;–;g);0‹”b(x)”Œforallx2Ω,andthecoefficientmatrixisbounded,symmetricandpositivedefiniteateachpointx2Ω:aij(x)=aji(x);(3)nXi;j=1aij(x)‘i‘j•‹nXi=1‘2i;(4)nXi;j=1aij(x)‘j˜i”ŒnXi=1˜2i‘1=2nXj=1‘2j‘1=2;(5)foralln­tuplesofrealnumbers(‘1;:::;‘n);(˜1;:::;˜n):Heretheconstants‹0andŒ0areindependentofx.Firstofall,weprovethattheellipticproblem(1)­(2)

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功