高考总复习含详解答案高中数学高考总复习立体几何各种平行与垂直的判断习题及详解一、选择题1.设b、c表示两条不重合的直线,α、β表示两个不同的平面,则下列命题是真命题的是()A.b⊂αc∥α⇒b∥cB.b⊂αb∥c⇒c∥αC.c∥αc⊥β⇒α⊥βD.c∥αα⊥β⇒c⊥β[答案]C[解析]选项A中的条件不能确定b∥c;选项B中条件的描述也包含着直线c在平面α内,故不正确;选项D中的条件也包含着c⊂β,c与β斜交或c∥β,故不正确.[点评]线线、线面、面面平行或垂直的性质定理和判定定理是解决空间图形位置关系推理的重要依据,在推理中容易把平面几何中的一些结论引用到立体几何中造成错误.对空间中位置关系的考虑不周,也是造成判断错误的因素,所以做这类题目应当考虑全面.2.定点A和B都在平面α内,定点P∉α,PB⊥α,C是α内异于A和B的动点,且PC⊥AC.那么,动点C在平面α内的轨迹是()A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点[答案]B[解析]连接BC,∵PB⊥α,∴AC⊥PB.又∵PC⊥AC,∴AC⊥BC.∴C在以AB为直径的圆上.故选B.3.设α、β、γ为平面,给出下列条件:①a、b为异面直线,a⊂α,b⊂β,a∥β,b∥α;②α内不共线的三点到β的距离相等;③α⊥γ,β⊥γ.其中能使α∥β成立的条件的个数是()A.0B.1C.2D.3[答案]B高考总复习含详解答案[解析]对于②,三个点不一定在同侧;对于③,面面的垂直关系不具有传递性.对于①,过b作平面γ∩α=b′,则b∥b′,∵a与b异面,∴a与b′相交,容易证明b′∥β,又∵a∥β,∴α∥β,故只有①正确.4.a、b、c是三条直线,α、β是两个平面,b⊂α,c⊄α,则下列命题不成立的是()A.若α∥β,c⊥α,则c⊥βB.“若b⊥β,则α⊥β”的逆命题C.若a是c在α内的射影,b⊥a,则b⊥cD.“若b∥c,则c∥α”的逆否命题[答案]B[解析]一条直线垂直于两个平行平面中的一个,则垂直于另一个,故A正确;若c∥α,∵a是c在α内的射影,∴c∥a,∵b⊥a,∴b⊥c;若c与α相交,则c与a相交,由线面垂直的性质与判定定理知,若b⊥a,则b⊥c,故C正确;∵b⊂α,c⊄α,b∥c,∴c∥α,因此原命题“若b∥c,则c∥α”为真,从而其逆否命题也为真,故D正确.如图,α⊥β,α∩β=l,b⊂α,b与l不垂直,则b与β不垂直,∴B不成立.5.(文)(2010·天津河东区)已知直线a⊂平面α,直线AO⊥α,垂足为O,PA∩α=P,若条件p:直线OP不垂直于直线a,条件q:直线AP不垂直于直线a,则条件p是条件q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案]C故OP⊥a⇔AP⊥a,从而p⇔q.高考总复习含详解答案(理)(2010·河南新乡调研)设α、β、γ为平面,l、m、n为直线,则m⊥β的一个充分条件为()A.α⊥β,α∩β=l,m⊥lB.n⊥α,n⊥β,m⊥αC.α∩γ=m,α⊥γ,β⊥γD.α⊥γ,β⊥γ,m⊥α[答案]B[解析]如图①知A错;如图②知C错;如图③在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错.6.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC[答案]D[解析]∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,故AB⊥平面ADC.∴平面ABC⊥平面ADC.7.(文)(2010·重庆文)到两互相垂直的异面直线的距离相等的点()A.只有1个B.恰有3个高考总复习含详解答案C.恰有4个D.有无穷多个[答案]D[解析]过两条互相垂直的异面直线的公垂线段中点且与两条直线都成45°角的直线上所有点到两条直线的距离都相等,故选D.(理)(2010·全国Ⅱ理)与正方体ABCD-A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个[答案]D[解析]如图连结B1D,可知B1D上的点到AB、CC1、A1D1的距离均相等,故选D.8.(文)平行四边形ABCD的对角线交点为O,点P在平面ABCD之外,且PA=PC,PD=PB,则PO与平面ABCD的关系是()A.斜交B.平行C.垂直D.无法确定[答案]C[解析]∵PA=PC,∴PO⊥AC,∵PB=PD,∴PO⊥BD,∵AC∩BD=O,∴PO⊥平面ABCD.(理)棱长都为2的直平行六面体(底面为平行四边形的棱柱)ABCD-A1B1C1D1中,∠BAD=60°,则对角线A1C与侧面DCC1D1所成角的正弦值为()A.12B.22C.34D.38[答案]C高考总复习含详解答案[解析]如图所示,过点A1作直线A1M⊥D1C1,交D1C1延长线于点M,连结MC,A1C,则可得A1M⊥面DD1C1C,∠A1CM就是直线A1C与面DD1C1C所成的角.∵所有棱长均为2,∠A1D1C1=120°,∴A1M=A1D1sin60°=3,又A1C=AC12+CC12=232+22=4,∴sin∠A1CM=A1MA1C=34,故应选C.[点评]求直线与平面所成角时,一般要先观察分析是否可以找(或作)出直线上一点到平面的垂线,若能找出则可以将线面角归结到一个直角三角形中求解.若不容易找出线面角,则可以考虑能否进行转化或借助于空间向量求解,请再练习下题:(2010·全国Ⅰ文)正方体ABCD-A1B1C1D1中BB1与平面ACD1所成角的余弦值为()A.23B.33C.23D.63[答案]D[解析]解法1:设BD与AC交于点O,连结D1O,∵BB1∥DD1,∴DD1与平面ACD1所成的角就是BB1与平面ACD1成的角.∵AC⊥BD,AC⊥DD1,DD1∩BD=D,∴AC⊥平面DD1B,平面DD1B∩平面ACD1=OD1,∴OD1是DD1在平面ACD1内的射影,故∠DD1O为直线DD1与平面ACD1所成的角,设正方体的棱长为1,则DD1=1,DO=22,D1O=62,∴cos∠DD1O=DD1D1O=63,∴BB1与平面ACD1所成角的余弦值为63.解法2:因为BB1∥DD1,所以BB1与平面ACD1所成角和DD1与平面ACD1所成角相等,设DO⊥平面ACD1,由等体积法得VD-ACD1=VD1-ACD,即13S△ACD1·DO=13S△ACD·DD1.设DD1=a,则S△ACD1=12AC·AD1sin60°=12×(2a)2×32=32a2,S△ACD=12AD·CD=12a2.所以DO=S△ACD·DD1S△ACD1=a33a2=33a,设DD1与平面ACD1所成角为θ,则sinθ=DODD1=33,所以cosθ=63.高考总复习含详解答案解法3:建立如图所示空间直角坐标系D-xyz,设边长为1,BB1→=(0,0,1),平面ACD1的一个法向量n=(1,1,1),∴cos〈BB1→,n〉=13·1=33,∴BB1与面ACD1所成角的余弦值为63.9.(文)(2010·鞍山一中模拟)已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α⊥β,其中正确的是()A.①②③B.②③④C.②④D.①③[答案]D∵m⊂β,∴此时推不出l∥m,故②错,排除A,故选D.(理)若平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直[答案]C[解析]若β内存在直线与m平行,则必有β⊥α,但α与β不一定垂直,故否定A、D;在β内必存在与m在β内射影垂直的直线,从而此线必与m垂直,否定B,故选C.10.(文)(2010·芜湖十二中)已知两条不同的直线m、n,两个不同的平面α、β,则下列命题中的真命题是()A.若m⊥α,n⊥β,α⊥β,则m⊥nB.若m∥α,n∥β,α∥β,则m∥nC.若m⊥α,n∥β,α⊥β,则m⊥nD.若m∥α,n⊥β,α⊥β,则m∥n高考总复习含详解答案[答案]A[解析]如图(1),m⊥α,n⊥α满足n∥β,但m∥n,故C错;如图(2)知B错;如图(3)正方体中,m∥α,n⊥β,α⊥β,知D错.(理)(2010·浙江金华十校模考)设a,b为两条直线,α,β为两个平面,下列四个命题中真命题是()A.若a,b与α所成角相等,则a∥bB.若a∥α,b∥β,α⊥β,则a⊥bC.若a⊂α,b⊂β,a⊥b,则α⊥βD.若a⊥α,b⊥β,α⊥β,则a⊥b[答案]D[解析]正四棱锥P-ABCD中,PA、PC与底面ABCD所成角相等,但PA与PC相交,∴A错;如图(1)正方体中,a∥b∥c,满足a∥α,b∥β,α⊥β,故B错;图(2)正方体中,上、下底面为β、α,a、b为棱,满足a⊂α,b⊂β,a⊥b,但α∥β,故C错;二、填空题11.对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;高考总复习含详解答案③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,AC⊥BD,则BC⊥AD.其中真命题的序号是________.(把你认为正确命题的序号都填上)[答案]①④[解析]本题考查四面体的性质,取BC的中点E,则BC⊥AE,BC⊥DE,∴BC⊥面ADE,∴BC⊥AD,故①正确.设O为A在面BCD上的射影,依题意OB⊥CD,OC⊥BD,∴O为垂心,∴OD⊥BC,∴BC⊥AD,故④正确,②③易排除,故答案为①④.12.(文)P为△ABC所在平面外一点,PA、PB、PC与平面ABC所成角均相等,又PA与BC垂直,那么△ABC形状可以是________.①正三角形②等腰三角形③非等腰三角形④等腰直角三角形(将你认为正确的序号全填上)[答案]①②④[解析]设点P在底面ABC上的射影为O,由PA、PB、PC与平面ABC所成角均相等,得OA=OB=OC,即点O为△ABC的外心,又由PA⊥BC,得OA⊥BC,即AO为△ABC中BC边上的高线,∴AB=AC,即△ABC必为等腰三角形,故应填①②④.(理)如图将边长为1的正方形纸板ABCD沿对角线AC折起,使平面ACB⊥平面ACD,然后放在桌面上,使点B、C、D落在桌面,这时点A到桌面的距离为________.[答案]63[解析]取AC中点O,∵OB⊥AC,OD⊥AC,OB∩OD=O,∴AC⊥平面BOD,∴∠BOD=90°.又∵BO=OD=22,∴BD=1,S△BOD=14,∴VA-BCD=13S△BOD·AC=212,设A到桌面距离为h,VA-BCD=13S△BCD·h=13×34×h=212,∴h=63,即A到桌面距离为63.13.(2010·安徽淮北一中)已知四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,点E、F分别是棱PC、PD的中点,则①棱AB与PD所在的直线垂直;②平面PBC与平面ABCD垂直;③△PCD的面积大于△PAB的面积;高考总复习含详解答案④直线AE与直线BF是异面直线.以上结论正确的是________.(写出所有正确结论的编号)[答案]①③[解析]由条件可得AB⊥平面PAD,所以AB⊥PD,故①正确;∵PA⊥平面ABCD,∴平面PAB、平面PAD都与平面ABCD垂直,故平面PBC不可能与平面ABCD垂直,②错;S△PCD