宁夏大学硕士生考试考查卷面纸2011~2012学年度第1学期姓名王晓芸学号12010130428学院土木与水利工程学院年级2010级专业结构工程研究方向基础与结构的协同作用课程岩土与塑性力学基础考试方式课程论文主考教师评语成绩主考教师签名:20年月日几种常见屈服与破坏准则的总结与对比【摘要】:本文主要总结了一些常见的屈服与破坏准则,对其进行了简单的介绍,并说明了个准则的几何与物理意义,对各准则的优缺点进行了总结与对比。【关键字】:屈服;破坏准则;评价【abstract】:ThispapermainlysummarizessomecommonyieldandfailureCriterion,andthepaperhassimplyintroducedforit,andexplainthegeometryandphysicalsignificanceofcriterion,summaryandcontrasttheadvantagesanddisadvantagesofvariousCriterions.【keywords】:yield;failureCriterion;evaluation关于岩土材料的破坏准则和屈服函数已研究了几十年,提出的各种表达式不下几十种。而且直到最近,还有人在继续提出各种建议。这些建议中不乏具有新意者,有的更在理论上有所突破。但也有许多建议者没有把自己的表达式与已有的表达式进行具体的比较以证明其优越性。本文将几种常用破坏与屈服准则进行了总结与对比。一、各种破坏与屈服准则的简单介绍1、Mohr-Coulomb屈服准则Coulomb形式:tan0fcMohr形式:1313()()sin2cos0fc其中:和------剪切面上的正应力和剪应力C和-------屈服或破坏参数,即材料的黏聚力和内摩擦角C-M准侧考虑了正应力或平均应力作用的最大剪应力或单一剪应力屈服理论,即当剪切面上的剪应力与正应力之比达到最大时,材料发生屈服于破坏。在应力空间中,当不知道三个主应力的大小时,其破坏准则可表示为:222222121223231313()()sin2cos()()sin2cos()()sin2cos0fccc2、Tresca与广义Tresca准则(1)Tresca准则该准侧主要针对的是金属类材料和=0的纯黏土分析,,又称最大剪应力屈服准则,即,当材料的最大剪应力达到某一极限值Tk时,材料产生屈服,其函数表示为:222222122331()4()4()40TTTfkkkTk为Tresca准则材料常数,由实验测定,当进行单向压缩实验时,23=0,1s,得Tk=1/2s.当进行纯剪切实验时,20,31s,则Tk=s。(2)广义Tresca准则广义Tresca准则是在Tresca准则基础上考虑了静水压力的一种屈服准则,其表达式是:1212313110TTTfkIkIkI或1cos0TJIk式中003030,是与材料相关的常数。3、Zienkiewice-Pande准则该准则是为了克服C-M准则的棱边或尖角,考虑到屈服与静水压力的非线性关系和2对强度的影响的一种屈服准则,函数表达式为:210nqfppkgq—广义剪应力的大小g----平面上的屈服曲线形状函数1,----系数n为指数,一般为0,1或2k-----屈服参数4、Mises准则Mises准则是针对Tresca准则没有考虑2对屈服的影响以及屈服面有棱角的缺陷,在对金属材料的实验分析基础上,同时考虑三个主应力影响的屈服准则,它考虑了材料的形状变化能,即当材料的形状变化比能达到一定程度时,材料开始屈服,故又称能量屈服准则。函数表达式是:122221223316MfkMk为Mises材料屈服常数,由实验测定,当进行单向拉压实验时,得Mk=s/3.当进行纯剪切实验时,则Mk=s5、Drucker-Prager屈服准则D-P准则是在Mises准则的基础上考虑了静水压力对屈服或破坏的影响,是广义的Mises准则,也是同时考虑了平均应力或体应变能及第二不变量或形状变化能的能量屈服准则,函数表达式为:1221,0,3330,620fIJJIkfPqqpkfk和k为D-P准则材料常数,它们与C-M准则的材料常数C和的关系为:2222sintan33sin912tan3cos33sin912tancck6、Lade-Duncan准则和Lade准则(1)Lade-Duncan准则Lade-Duncan准则是适用于砂土的屈服于破坏准则。它反映了三个主应力或三个应力不变量对屈服与破坏的影响。屈服函数是3113,3,0IfIIkkIk-------屈服参数或应力水平参数,当破坏时,,,fffffkkk为破坏参数;其值可以由应力水平或三轴固结排水或不排水实验测定。(2)Lade双屈服面屈服准则Lade双屈服面屈服准则包括了一个含有两个参数的剪切屈服与破坏函数或屈服面,即:33321113,3112,,1221,,27011,,963sin302727pampaIIfIImkkIpIfIJmkIJJkkIp和一个压缩屈服函数或屈服面,即:222221,21221,23,123,20,0ccfIIrIIrfrrap-----------大气压力2I-----------第二应力不变量k、r-------剪切与压缩的应力水平参数,当破坏时,,,pfffffkkk为材料参数二、各准则的几何意义与物理意义1、Mohr-Coulomb屈服准则在主应力空间中,C-M准则是一个以空间对角线或静水压力线为对称轴的六角锥体,六个锥角三三相等。在偏平面上屈服曲线为一个六个角三三相等的六边形,在2=0的平面内,屈服曲线为不等边的六角形,六条线代表六种不同的应力屈服条件,其中当20时,,该六边形沿13直线向上平移和扩大,说明了平均应力和2对屈服条件的影响。2、Tresca准则在主应力空间中,Tresca准则的屈服面是一个以静水压力线或空间对角线为轴的正六角柱体,在偏平面上是一个六边形,而在2=0的平面内则是一个具有两个直角的正六边形。在p-q平面为两条平行于p轴的直线,说明Tresca准则与静水压力无关。3、广义Tresca准则广义Tresca准则在主应力空间中是一个以静水压力线为轴的等边六角锥体,在平面内则是一个正六边形,在2=0的平面内是一个不等边的六角形。4、Mises准则在主应力空间中,Mises准则为一个以静水压力线或空间对角线为轴的圆柱体面,圆柱半径为r,在在2=0的平面内是一个以原点为中心的椭圆。5、Drucker-Prager屈服准则在偏平面(13pconst)或平面上(=0)D-P准则的屈服曲线为一个以22rJ为半径的圆。在主应力空间中,D-P准则的屈服面是一个以空间对角线为轴的圆锥面,而在2=0的平面内则是一个圆心在13轴上但是偏离了原点的椭圆。6、Lade-Duncan准则和Lade准则L-D准则在主应力空间为一个顶点在原点,以静水压力为轴线,随应力水平不断扩张的曲边三角椎体,在偏平面上的投影为一套随静水压力不断扩大的曲边三角形,最后当p=0时,收缩为一个点。在132子午面上,屈服曲线为一簇通过原点的射线。Lade准则在主应力空间,剪胀屈服面是以静水压力或空间对角线为对称轴,母线为三次曲线且不通过原点的一族开口曲边三角锥体,压缩屈服面则是一个以原点为球心,以222123r为半径的一族同心球面。在I1等于常数的偏平面上,屈服曲线为以2J和为参变量的三次曲线,在132的常规三轴仪实验平面上,屈服曲线为一族应力的三次曲线,曲线的曲率取决于材料的参数m值m变化在0到1之间。三、各种准则的评价1、Mohr-Coulomb屈服准则优点:(1)反映岩土类材料的抗压强度不同的S-D效应对正应力的敏感性,(2)反映了静水压力三向等压的影响,(3)简单实用,参数简单易测。缺点:(1)没有反映中主应力2对屈服和破坏的影响(2)没有考虑单纯静水压力引起的岩土屈服的特性(3)屈服面有转折点,棱角,不连续,不便于塑性应变增量的计算。2、Tresca准则优点:当知道主应力的大小顺序,应用简单方便缺点:(1)没有考虑正应力和静水压力对屈服的影响。(2)屈服面有转折点,棱角,不连续.3、广义Tresca准则优点:考虑静水压力对屈服的影响缺点:屈服面有转折点,棱角,不连续.4、Zienkiewice-Pande准则优点:(1)三种曲线在子午面上都是光滑曲线,利于数值计算(2)在一定程度上考虑了屈服曲线与静水压力的非线性关系(3)在一定程度上考虑了中主应力2对屈服和破坏的影响5、Mises屈服准则优点:(1)考虑了中主应力2对屈服和破坏的影响(2)简单实用,材料参数少,易于实验测定(3)屈服曲面光滑,没有棱角,利于塑性应变增量方向的确定和数值计算缺点:(1)没有考虑静水压力对屈服的影响(2)没有考虑单纯静水压力p对岩土类材料屈服的影响及屈服与破坏的非线性特性(3)没有考虑岩土类材料在偏平面上拉压强度不同的S-D效应6、Drucker-Prager屈服准则优点:(1)考虑了中主应力2对屈服和破坏的影响(2)简单实用,材料参数少,可以由C-M准则材料常数换算(3)屈服曲面光滑,没有棱角,利于塑性应变增量方向的确定和数值计算(4)考虑了静水压力对屈服的影响(5)更符合实际缺点:(1)没有考虑单纯静水压力p对岩土类材料屈服的影响及屈服与破坏的非线性特性(2)没有考虑岩土类材料在偏平面上拉压强度不同的S-D效应7、Lade-Duncan准则优点:(1)屈服曲面光滑,没有棱角,连续,利于数值计算和塑性应变增量方向的确定(2)反映了三个主应力特别是中主应力2对屈服和破坏的影响(3)材料参数少,易于实验测定(4)反映岩土类材料的拉压强度不同的S-D效应缺点:(1)没有考虑单纯静水压力p对岩土类材料屈服的影响及屈服与破坏的非线性特性(2)只适用于砂土类,还不能适用于岩土,混凝土以及超固结黏土等大多数岩土类材料(3)不能反映高应力水平作用下屈服曲线与静水压力的非线性关系8、Lade双屈服面屈服准则优点:(1)三种曲线在子午面上都是光滑曲线,利于数值计算和塑性应变增量方向的确定(2)反映岩土类材料的拉压强度不同的S-D效应(3)材料参数少,易于实验测定(4)适用范围广,适用于砂土类,岩土,混凝土以及超固结黏土等大多数岩土类材料(5)反映剪胀屈服曲线与静水压力的非线性关系(6)考虑单纯静水压力p对岩土类材料屈服的影响及屈服与破坏的非线性特性缺点:(1)在剪胀屈服面与压缩屈服面的空间交线上具有奇异性或棱角【参考文献】:1张学言闫澍旺.岩土与塑性力学基础,天津大学出版社.2004,68-88.2沈珠江.几种屈服函数的比较.岩土力学,1993(1)