单向阀和液控单向阀

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

单向阀和液控单向阀第六章方向阀和方向控制回路换向阀方向控制回路§6-1单向阀和液控单向阀一、单向阀二、液控单向阀三、双向液压锁单向阀只允许油液某一方向流动,而反向截止。这种阀也称为止回阀。对单向阀的主要性能要求是:油液通过时压力损失要小;反向截止密封性要好。其结构如图。压力油从P1进入,克服弹簧力推动阀芯,使油路接通,压力油从P2流出;当压力油从反向进入时,油液压力和弹簧力将阀芯压紧在阀座上,油液不能通过。单向阀都采用图示的座阀式结构,这有利于保证良好的反向密封性能。一、单向阀单向阀二、液控单向阀图6-2液控单向阀控制活塞2-推杆3-锥阀芯4-弹簧如图所示,液控单向阀下部有一控制油口K,当控制口不通压力油时,此阀的作用与单向阀相同;但当控制口通以压力油时,阀就保持开启状态,液流双向都能自由通过。图上半部与一般单向阀相同,下半部有一控活塞1,控制油口K通以一定压力的压力油时,推动活塞1并通过推杆2使锥阀芯3抬起,阀就保持开启状态。图中为带卸荷阀芯的液压单向阀阀芯结构,活塞背面全部受到进油压力作用,此时控制口K的压力必须超过P1腔压力才能使活塞1运动并顶开锥阀芯3。当P2腔压力较高时,顶开锥阀3所需的控制压力可能很高。为了减少控制口K的开启压力,在锥阀3内部增加了一个卸荷阀芯6。在控制活塞顶起锥阀3之前先顶起卸荷阀芯6,上腔压力有了这一结构,液控单向阀便可控制较高的油压而不需增加控制活塞的直径合和使用过高的控制油压。5-弹簧6-卸荷阀芯图6-2液控单向阀具有漏油油口的结构三、双向液压锁阀体2-控制活塞3-顶杆图6-4双向液压锁结构原理如图所示,使两个液控单向阀共用一个阀体1和一个控制活塞2,而顶杆3分别置于控制活塞两端,这样就成为双向液压锁。当P1腔通压力油时,一方面油液通过左阀到P2腔,另一方面使右阀顶开,保持P4与P3腔畅通。同样当P3腔通压力油时一方面油液通过右阀到P4腔,另一方面使左阀顶开,保持P2与P1腔通畅。而当P1和P2腔都不通压力油时,P2和P4腔封闭,执行元件被双向锁住,故称为双向液压锁。结束换向阀的基本作用可归结为:利用阀芯和阀体的相对运动使阀所控制的一些油口接通或断开。对换向阀的主要能要求是:油路导通时,压力损失要小;油路断开时,泄漏量要小;阀芯换位,操纵力要小以及换向平稳等。换向阀的用途什么广泛,种类也很多,可根据换向阀的结构、操纵、位置和通路数等分类。§6-2换向阀一、滑阀式换向阀的换向原理和图形符号二、滑阀式换向阀的结构三、滑阀机能四、液压卡紧现象五、操纵方式六、其他结构形式的换向阀七、多路换向阀一、滑阀式换向阀的换向原理和图形符号图6-5换向阀换向原理滑阀式换向阀是靠阀芯在阀体内作轴向运动,而使相应的油路接通或断开的换向阀。其换向原理如下图所示。当阀芯处于左图位置时,P与B,A与T相连,活塞向左运动;当阀芯向右移动处于右图位置时,P与A,B与T相连,活塞向右运动。所以图示换向阀可用于使液压执行元件换向。图形符号二位四通二位三通二位二通位和通表6-2常用换向阀的结构原理和图形符号结构原理图三位五通三位四通二位五通位和通结构原理图图形符号下表列出了几种常用换向阀的结构原理和图形符号。一个换向阀完整的图形符号速应表示出操纵、复位和定位方式等。换向阀图形符号含义如下:(1)用方框表示阀的工作位置,有几个方框就表示几“位”。(2)方框内的箭头表示在这一位置上油路处于接通状态,但并不一定表示油流的实际流向;(3)方框内符号⊥或┰表示此油路被阀芯封闭;(4)一个方框的上边和下边与外部连接的接口数表示几“通”;(5)一般,阀与系统供油路连接的进油口用字母P表示;阀与系统回油路连接的回油口用字母T(或O)表示;而阀与执行元件连接的工作油口则用字母A、B等表示。有时在图形符号上还标出泄漏油口,用字母L表示。二、滑阀式换向阀的结构下图是三槽二台肩换向阀的换向原理。当换向阀芯处于左位时图a,P与A通,B与T通;当阀芯处于右位时图b,P与B通,A与T通。这种阀的长度较短,但回油压力直接作用于阀芯两端,对密封装置有较高的要求。图为滑阀和阀芯的实际结构三、滑阀机能表6-3四通滑阀中位机能机能代号结构原理图结构原理图中位图形符号机能代号中位图形符号多位阀处于不同位置时,其各油口连通情况不同,这种不同的连通方式体现了换向阀的各种控制机能,称为滑阀机能。下图是三位四通阀中位机能。图6-11阀芯上的径向力分析滑阀式换向中,由于阀芯和阀体孔的几何形状误差和中心线不重和,进入滑阀配合间隙中的压力油将对阀芯产生不平衡的径向力,使阀芯紧贴在孔壁上,产生相当大的摩擦力,使滑阀卡住,这称为液压卡紧现象。下图表示阀芯上所受径向力的几种情况。图中P1为高压侧压力,P2为低压侧压力。四、液压卡紧现象图中(a)的阀芯带有锥度,间隙小的一端在高压侧(称倒锥)。如果阀芯不带锥度,那么在缝隙中沿x向的压力分布为直线,如图中P1与P2间的点画线所示。现在阀芯带锥度,高压侧的缝隙小,因此压力沿x向先急剧下降后变缓,压力分布为凹形,如图(a)中的曲线a和b所示。又因阀芯下部缝隙较大,其压力分布曲线凹度较上部缝隙小。这样阀芯就受到一个不平衡的径向液压力,如图中阴影部分所示,方向使偏心加大。图(b)所示间隙小的一端在低压侧(称顺锥),这时阀芯如有偏心,也将产生径向不平衡液压力,但此力力图减少偏心量,有自动定心作用。图(c)所示为阀芯和阀体中心线不平行情况。从图中分析可看出,这种情况下的径向不平衡液压力最大。图6-12阀芯倾斜时开环形槽的效果开环形槽的效果开有均压槽的部位,四周都有相等或接近相等的压力油,可显著减少液压卡紧力。阀芯倾斜时开环槽的效果可从下图看出:1、手动换向阀4、液动换向阀5、电液动换向阀(1)二位二通电磁阀(4)干式和湿式电磁铁五、操纵方式3、电磁换向阀2、机动换向阀(3)交流和直流电磁铁(2)三位四通电磁阀1.手动换向阀下图是弹簧自动复位式三位四通手动换向阀。推动手柄向右,阀芯向左移动至左位,此时P与A相通;推动手柄向左,阀芯处于右位,液流换向。该阀适于动作频繁、工作持续时间短的场合,操作比较完全,常应用于工程机械。2.机动换向阀机动换向阀又称行程换向阀。它依靠行程挡块推动阀芯实现转向。机动阀动作可靠,改变挡块斜面角度便可改变换向时阀芯的移动速度,因而可以调节换向过程的快慢。右图是二位三通机动换向阀。在常态位,P与A相通;当行程挡快5压下机动阀滚轮4时,P与B相通。它经常应用于机床液压系统的速度换接回路中。弹簧2-阀芯3-阀体4-滚轮5-行程挡块3.电磁换向阀(1)二位二通换向阀电磁阀借助于电磁铁吸力推动阀芯动作。其操纵方便,布置灵活,易于实现动作转换的自动化。但其吸力有限,不能用来直接操纵大规格的阀。()()二位二通电磁阀下图是二位二通阀的图形符号。如果常态时P与A断开,我们称这种阀具有常闭(O型)机能,见图A。反之,常态时P与A相通,我们称这种阀具有常开(H型)机能,见图B。电磁铁行程向阀芯弹簧阀体推杆密封电磁铁手动推杆图中是二位二通电磁阀结构阀。常态时P与A不通。通电时,电磁铁6通过推杆4克服弹簧2的预紧力,推动阀芯1,使阀芯1换位,P与A接通。电磁铁顶部的手动推杆7是为检查电磁铁是否动作以及在电气发生故障时实现手动操纵而设置的。(2)三位四通电磁阀三位四通电磁阀结构如图所示。阀两端有两根对中弹簧4和两个定位套3使阀芯2在常态时处于中位。在右端电磁铁通电吸合时,衔铁9通过推杆6将芯推到左端;反之左端电磁铁通电吸合时,阀芯被推到右端。在图中滑阀为三槽二台肩式,阀芯两端是和回油腔T连通的。三位四通电磁阀阀体阀芯定位套对中弹簧挡圈推杆环线圈衔铁导套插头组件(3)交流和直流电磁铁根据电磁铁所用电源不同可分为交流电磁铁和直流电磁铁两种。交流电磁铁的优点是电源简单方便,启动力大。缺点是启动电流大,在阀芯被卡住时会使电磁铁线圈烧毁。交流电磁铁动作快,换向冲击大,换向频率不能太高。直流电磁铁不论吸合与否,其电流基本不变,因此不会因阀被卡住而烧毁电磁铁线圈,工作可靠性好,换向冲击力也小。换向频率较高。但需要有直流电源。(4)干式和湿式电磁铁按照电磁铁的衔铁是否浸在油里,电磁铁又分为干式和湿式两种。干式电磁铁不允许油液进入电磁铁内部,因此推动阀芯推杆处要有可靠的密封,密封处摩擦阻力较大,影响换向可靠性,也易产生泄漏。湿式电磁铁中具有非导磁材料制成的导套,油液被封在导套内。在线圈作用下,衔铁在导套内移动。所以,电磁阀的相对运动部件之间就不需要设置密封装置,减少了阀芯运动阻力,提高了滑阀转向可靠性,并且没有外泄漏。另外,套内的油液对衔铁的运动产生阻尼作用,有利于减少换向冲击和噪声。湿式电磁铁的结构见下图。湿式电磁铁的结构三位四通电磁阀阀体阀芯定位套对中弹簧挡圈推杆环线圈衔铁导套插头组件4.液动换向阀液动换向阀利用控制油路的压力油来推动阀芯实现换向,因此它适用于较大流量的阀。下图是三位四通液动换向阀的结构原理图。当控制油口K1、K2不通压力油时,阀芯在对中弹簧作用下处于中位。当K1通压力油、K2回油时,阀芯右移,P与A通、B与T通;当K1通压力油、K2回油时,阀芯左移(如图中所示)。可调式液动换向阀在液动阀的控制回路上往往装有可调的单向节流阀(称阻尼器),以便分别调节换向阀芯在两个方向上的运动速度,改善换向性能。阻尼器可和液动阀连成一体,也可有独立的阀体。带有阻尼器的液动换向阀称为可调式液动换向阀。其符号见下图。5.电液动换向阀由于电磁阀吸力有限,电磁阀不能做成大规格。大规格时都做成电液动换向阀。它由大规格带阻尼器的液动换向阀和小规格电磁换向阀组合而成。其中电磁阀时是先导阀,液动阀是主阀。电液换向阀结构见图。、对中弹簧阀芯图6-20电液动换向阀下左图为电液换向阀的图形符号,右图为其简化图形符号。当先导电磁阀的电磁铁1DT和2DT都断电时,电磁处于中位,控制压力油进油口P’关闭,主阀芯在对中弹簧作用下处于中位,主油路进油口P也关闭。当1DT通电,电磁阀处于左位,控制压力油经P’A’单向阀主阀芯左端油腔,而回油从主阀芯右端油腔节流阀B’T’油箱。于是主阀切换到左位,主油路P与B通、A与T通。当2DT通电、1DT断电时,则有P与A通、B与T通。下图所示也是一种电液换向阀,不过这种阀不是为了解决大规格问题,而是为了减小控制功率而设计的,称为低功率电磁阀。图中主阀两端面与T’相通,在对中弹簧作用下,主阀处于中位。当左端电磁铁吸合时,通过推杆2使先导阀芯5向右运动,主阀左端面A’与P’相通,主阀被推向右端,实现了换位。同样,当右端电磁铁吸合时,主阀被推至左端。10-主阀体11-主阀体-控制压力进油口-控制压力油回油口1、转阀式换向阀六、其他结构形式的换向阀在转阀中,阀芯相对于阀体作旋转运动以实现油路换向,一般采用手动或机动操纵。三位四通转阀结构原理如图所示。进油口P始终与阀芯1上的环形槽c和轴向槽b、d相通。回油口T与阀芯1上的环形槽a和轴向槽e、f相通。在图示位置(D-D剖面)用手柄2使阀芯旋转90。时,P与B通,A与T通,油路换向。阀芯操纵手柄拨爪图示为座阀式二位三通电磁阀换向阀的结构原理图。在图示状态,压力油P一方面作用在球阀1的左边,另一方面作用在球阀的右边,以保证球阀两边受力平衡。在常态时,球阀1压在左阀座3上,此时P与A通,A与T切断。电磁铁通电时,衔接推杠杆5,推动杆6,使球阀1压向右阀座上。于是油路切换,P与A切断,A与T接通。2、座阀式换向阀(球阀式换向阀)七、多路换向阀目前实际上应用的多路阀型式很多,可以分为以下几种:1.按阀体的外形,分为整体式和分片式。整体式的结构紧凑、重量轻、压力损失也较小。缺点是不同机械的多路阀难于通用;加工时只要有一个阀孔不合格既全体报废;整体式的阀体一般是铸造的,工艺比单片复杂。分片式的可以用很少几种单元阀体组合多种不同的多路阀以适应各种机械的需要,因此增大了它的使用范围。这类阀的缺点是加大了体积和重量,各片之间要有密封。2.按各联换向阀均处于中立位置时的回油方式有图示两种:图a中的压力油经各联换向阀中专门的

1 / 50
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功