高等数学-习题答案-方明亮-第四章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1习题4-11.求下列不定积分:(1)解:Cxxxxxxxxx25232122d)5(d)51((2)解:xxxd)32(2Cxxx3ln296ln622ln24(3)略.(4)解:xxxxxxxd)1(cscd11d)cot11(2222=Cxxxcotarcsin(5)解:xxxd2103Cxxxxxx80ln80d80d810(6)解:xxd2sin2=Cxxxxsin2121d)cos1(21(7)xxxxdsincos2cosCxxxxxxxxxxcossind)sin(cosdsincossincos22(8)解:xxxxdsincos2cos22xxxxxxxxd)cos1sin1(dsincossincos222222Cxxtancot(9)解:xxxxxxxxxdtansecdsecd)tan(secsec2Cxxsectan(10)解:},,1max{)(xxf设1,11,11,)(xxxxxxf则.上连续在),()(xf,)(xF则必存在原函数,1,2111,1,21)(32212xCxxCxxCxxF须处处连续,有又)(xF)21(lim)(lim12121CxCxxx,,21112CC即)(lim)21(lim21321CxCxxx,,12123CC即.2,1CC联立并令.1,2132CCCC+可得.1,12111,211,21},1max{22xCxxCxxCxdxx故2.解:设所求曲线方程为)(xfy,其上任一点),(yx处切线的斜率为3ddxxy,从而Cxxxy4341d由0)0(y,得0C,因此所求曲线方程为441xy.3.解:因为xxxcossinsin212,xxxsincoscos212xxxxcossin2sin212cos41所以x2sin21、x2cos21、x2cos41都是xxcossin的原函数.习题4-21.填空.(1)21xxd=d(x1+C)(2)xxd1=d(xln+C)(3)xexd=d(xe+C)(4)xxdsec2=d(xtan+C)(5)xxdsin=d(xcos+C)(6)xxdcos=d(xsin+C)(7)xxd112=d(xarcsin+C)(8)xxxd12=d(21x+C)(9)xxxdsectan=d(xsec+C)(10)xxd112=d(xarctan+C)3(11)xxxd)1(1=d(2xarctan+C)(12)xxd=d(22x+C)2.求下列不定积分:(1)解:xxxd42)4d()4(21)24d(41221222xxxxCxCx4)4(2212(2)解:xxxdln4Cxxx5ln)d(lnln54(3)解:xxexd21Cexexx11)1d((4)解:xeeexxxd)22(32Ceeeeeexxxxxx22131)d()22(4332(5)解:294dxxCxxxxx23arcsin31)23(1)23d(31)23(12d22(6)解:xxxxd)ln(ln12Cxxxxxxln1)lnd()ln(12(7)解:xxxxdlnlnln1Cxxxxxxlnlnln)lnd(lnlnln1)d(lnlnlnln1(8)解:xeexxd1Ceeexxxarctan)d(112(9)解:xxdcos4xxxxxd42cos2cos21d)22cos1(22xxxd)42cos22cos41(242sinxxxxd24cos142sin3xxCx44sin(10)解:xxxxxdcossincossin3Cxxxxxx323)cos(sin2)cosd(sincossin1(11)解:xxdcos3xxxdcoscos2)d(sinsin12xxCxx3sinsin34(12)解:xxxd1102arccos)d(arccos10arccosxxCx10ln10arccos(13)解:xxxd1arcsin2Cxxx2arcsin)d(arcsinarcsin2(14)解:xxxdsincosCxxxsin2)d(sinsin1(15)解:xxxxd)1(arctan)d()(1arctan2d1arctan22xxxxxxCxxx2)(arctan)d(arctanarctan2(16)解:xxxdcossin53xxxxxxcosdcos)cos1(cosdcossin5252Cxx68cos61cos81(17)解:xxxdsectan53xxxxxxsecdsec)1(secsecdsectan4242Cxxx57sec51sec71(18)解:Cxxxxxxxxcos219cos181d2sin9sind4sin5cos(19)解:xxxdsectan43xxxxxxtand)1(tantantandsectan2323Cxxx56tan41tan61(20)解:令tx6,则6tx,ttxd6d5,代入原式得Ctttttttttxxxarctan66d1116d6)1(1d)1(1225233=Cxx66arctan66(21)解:令txsec,]2,0[t,tttxdtansecd,则Ctttttttxxxddtansectansec1d112=Cx1arccos(22)解:)1d(1)1(1)1d(1)1(1d112222xxxxxxxxx5)1)1d((1)1(1222xx1)1(22xCxx212习题4-3求下列不定积分(1)解:xxxd2sin)2cosd(21xxxxxxd2cos212cos2Cxxx2sin412cos2(2)解:xxexdCexexexeexxxxxxdd(3)解:xxxdln2xxxxxxxxxxd3ln3)d(ln3ln3)3d(ln23333Cxxx9ln333(4)略.(5)解:xxxdcos2xxxxxxxxxxxdsin2sindsinsinsind2222xxxxxxxxxxdcos2cos2sincosd2sin22Cxxxxxsin2cos2sin2(6)解:因为xxexd2sinxexd2sin)2d(sin2sinxexexx)d(2cos22sinxxexxe)2d(cos22cos22sinxexexexxxxxexexexxxd2sin42cos22sin于是xxexd2sinCxexexx52cos22sin(7)解:xxxdarctan2xxxxxxarctand3arctan33darctan333xxxxxd131arctan3233xxxxxxxd131arctan3233Cxxxx)1ln(31arctan32236(8)解:xxxdcos2xxxxxxxd)2cos(21d22cos1xxxxd2cos2142xxx2sind4142xxxxxd2sin412sin4142Cxxxx2cos812sin4142(9)解:xxxdarcsin1xxxxxxarcsind2arcsin2darcsin2xxxxd11arcsin2Cxxx12arcsin2(10)解:xexxd32xxxxxexexxxeexex33233232d923d323d31Cexeexxxx3332272923(11)解:因为xxdlncosxxxxxxxxdlnsinlncoslncosdlncosxxxxxxlnsindlnsinlncosxxxxxxdlncoslnsinlncos于是xxdlncosCxxxx2lnsinlncos(12)解:xxfxd)(Cxfxfxxxfxfxxfx)()(d)()()(d习题4-4求下列不定积分(1)解:xxxd13xxxxxxxxd11d)1(d11123Cxxxx1ln2323(2)解:xxxxxd8345xxxxxxxxd8d)1(3227xxxxxxxd)13148(d)1(2Cxxxxxx1ln31ln4ln82323(3)解:xxxxxd)1)(2(1322222xxd21xxxxxxd)1(43d12222xxxxxxxxxd)1(4)1()1d(23d1121)1d(212ln22222222Cxxxxxxxarctan212)1(23arctan2)1ln(212ln222(上式最后一个积分用积分表公式28)(4)解:xxxxxd)1(411622xxxxd])1(1124[2Cxxx111ln2ln4Cxxx11)1(ln22(5)解:xxxxxd123xxxxd)1)(1(2xxxxxd11211d212Cxxxarctan21)1ln(411ln212(6)解:xx2sin3dxx2cos7d2xutan243duu2)32(1d31uuCx3tan2arctan321(7)解:311dxx31xtttt1d32tttd)111(3Cttt1ln232(8)解:xxxxd11xxt11ttttd)1)(1(4222ttttd)121111(2Ctttarctan211ln习题4-5利用积分表计算下列不定积分:8(1)245dxxx解:因为245dxxx2)2(1)2d(xx在积分表中查得公式(73)Caxxaxx)ln(d2222现在1a,2xx,于是245dxxxCxxx)245ln(2(2)xxdln3解:在积分表中查得公式(135)xxnxxxxnnndln)(lndln1现在3n,重复利用此公式三次,得xxdln3Cxxxxxxx6ln6ln3ln23.(3)xxd)1(122解:在积分表中查得公式(28)baxxbbaxbxxaxb2222d21)(2d)(1于是现在1a,1b,于是xxd)1(122Cxxxxxxxarctan)1(21d21)1(2222(4)1d2xxx解:在积分表中查得公式(51)Cxaaxaxxarccos1d12于是现在1a,于是1d2xxxCx1arccos

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功