计算机网络课设__封装Ethernet帧

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1成绩评定表学生姓名张芸班级学号1203050211专业计算机科学与技术课程设计题目封装Ethernet帧评语组长签字:成绩日期2012年12月3日2课程设计任务书学院信息科学与工程学院专业计算机科学与技术学生姓名张芸班级学号1203050211课程设计题目封装Ethernet帧实践教学要求与任务:根据后面介绍的IEEE802.3帧结构,编写程序将指定数据封装为Ethernet帧。1)以命令行形式运行:EncapFrameinput_fileoutput_file其中,EncapFrame为程序名,input_file为输入数据文件,output_file为输出文件。2)输出内容:Ethernet帧的各字段内容。工作计划与进度安排:第17周星期二:1-4节编写程序星期六:1-12节调试程序,写报告,答辩。指导教师:2012年12月日专业负责人:2012年12月日学院教学副院长:2012年12月日3摘要本设计题目是封装Ethernet帧,要实现的功能是通过封装Ethernet帧,了解Ethernet帧中各个字段的含义与用途。首先介绍本题目的相关知识,有帧的结构及和CRC冗余校验算法。其次是程序设计分析,主要包括填充帧头部字段、填充数据字段和CRC校验,并根据算法给出了程序流程图。最后,是程序运行结果及实现代码,运行结果符合设计要求。本程序主要关键词有:帧,CRC冗余校验,封装,填充等。4目录1.课程设计目的..............................52.课程设计要求.............................53.相关知识..................................54.课程设计分析..............................85.相关扩展.................................106.程序代码..................................147.运行结果与分析............................168.参考文献..................................1751课程设计目的帧是在数据链路层中进行数据传输的基本单位。熟悉帧结构对于理解网络协议的概念、网络层次结构与协议执行过程具有重要的意义。本课程设计的主要目的是通过封装Ethernet帧,了解Ethernet帧中各个字段的含义与用途。2课程设计要求根据后面介绍的IEEE802.3帧结构,编写程序将指定数据封装为Ethernet帧。1)以命令行形式运行:EncapFrameinput_fileoutput_file其中,EncapFrame为程序名,input_file为输入数据文件,output_file为输出文件。2)输出内容:Ethernet帧的各字段内容。3相关知识1.帧术语“帧”来源于串行线路上的通信。其中,发送者在发送数据的前后分别添加特殊的字符,使它们成为一个帧。Ethernet从某种程度上可以被看做是机器之间的数据链路层连接。首先我们来认识一下帧结构,EthernerV2.0规范和IEEE802.3标准中的Ethernet帧结构有一些差别,这里我们按802.3标准的帧结构进行讨论。图为帧结构图前导码帧前定界符目的地址源地址长度字段数据字段校验字段(7B)(1B)(2/6B)(2/6B)(2B)(长度可变)(4B)图1.帧结构图6如上图所示,802.3标准的Ethernet帧结构由7部分组成。(1)前导码与帧前定界符字段前导码由56位(7B)的10101010…10101010位序列组成。帧前定界符可以视为前导码的延续。1B的帧前定界符结构为10101011.如果将前导码与帧前定界符一起看,那么在62位101010…1010位序列之后出现11。在11之后是Ethernet帧的目的地址字段。前导码与帧前定界符主要是保证接收同步,这8B接收后不需要保留,也不记入帧头长度中。(2)目的地址和源地址目的地址(DA)与源地址(SA)分别表示帧的接收结点地址与发送结点的硬件地址。在Ethernet帧中,目的地址和源地址字段长度可以是2B或6B。目前的Ethernet都使用6B长度的地址。Ethernet帧的目的地址可以是单播地址、多播地址与广播地址,目的地址的第一位为0表示单播地址,为1表示多播地址,目的地址为全1则表示广播地址。(3)长度字段Ethernet帧用2B定义数据字段包含的字节数。协议规定,帧数据的最小长度为46B,最大长度为1500B。设置最小帧长度的目的是使每个接收结点能够有足够时间检测到冲突。(4)数据字段帧数据字段的最小长度为46B。如果帧的LLC数据少于46B,则应将数据字段填充只46B。填充字符是任意的,不计入长度字段值中。(5)校验字段帧校验字段(FCS)采用32位的CRC校验。校验的范围包括目的地址字段、源地址字段、长度字段、LLC数据字段。此处,为了简便起见,采用8位的CRC校验。CRC校验的生成多项式为:G(X)=X^8+X^2+X+1某些帧结构中还会包括帧类型字段,用来识别此帧所承载的数据的类型。当一个帧到达指定的计算机时,操作系统根据帧类型决定用哪个协议软件模块对它进行处理。自识别帧的主要优点是,可以在同一物理网络中使用多个协议而互不干扰。72.CRC校验循环冗余编码的编码方式。过程:在发送端,根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码,附在原始信息的后边,构成一个新的二进制码序列,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。(1)CRC编码的代数学原理将一个码组表示为一个多项式,码组中的各码元作为多项式的系数。设编码前的原始信息多项式为P(x),P(x)最高次幂加1等于k;生成多项式为G(x),它的最高次幂等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。发送方编码的方法是:P(x)乘以x^r,再除以G(x),得余式即为R(x)。接收方得解码方法是:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有错误。(2)CRC的基本实现以CRC-8(X^8+X^2+X^1为例,它由多个移位寄存器和加法器组成。编码、解码前将各寄存器初始化为0,输入位作为最右边异或操作的输入之一。三个寄存器上的移位操作同时进行,均为左移一位,左边的寄存器的最左一位作为三个异或操作的输入之一。每次移位时,最右边的寄存器内容作为中间异或操作的输入之一,中间的寄存器的内容作为最左边异或操作输入之一,各个异或操作的结果作为与它左边那个寄存器的移入位。重复以上步骤,每输入一位就做一次移位操作,直到输入了所有要计算的数据为止。这时,这个寄存器组中的数据就是CRC-8的结果。CRC的工作原理是:CRC在发送端编码和接收端校验时,都可以利用事先约定的生成多项式G(x)来得到,K位要发送的信息位可对应于一个(k-1)次多项式K(x),r位冗余位对应于一个(r-1)次多项式R(x),由r位冗余位组成的n=k+r位码对应于一个(n-1)次多项式T(x)=X^r*K(x)+R(x)。(3)循环冗余校验码的特点CRC校验码的检错能力很强,不仅能检查出离散错误,还能检查出突发错误.CRC校验码具有以下的检错能力:8CRC校验码可检测出所有单个错误,所有奇数位错误,所有双位的错误,所有小于、等于校验位长度的突发错误。4课程设计分析1.填充帧头部字段要完成一次帧封装的过程,首先要完成的是帧头部的装入,这一过程只要将前导码、定界符、目的地址、源地址、长度字段的相应数值按顺序写入就可以了。其中,长度字段的值即为要发送的数据的实际长度。有以下两种方式来获得长度字段的值。方法一:While(!in.eof()){in.get(a);buf[j]=a;j++;}方法二:infile.open(argv[1],ios::binary);infile.seekg(0,ios::end);shortlength=(short)infile.tellg();file.put(char(length/256));file.put(char(length%256));2.填充数据字段在填充数据字段的过程中要注意的主要问题是数据字段的长度。802.3标准中规定了帧数据字段的最小长度为46B,最大长度为1500B。如果数据不足46B,则需要通过填充0来补足;若数据长度超过1500B,则将超过部分封装入下一个帧进行发送。由于帧头部分应该包括6B目的地址、6B源地址、2B长度字段以及4B帧校验字段,因此帧头部分长度为18B。前导码与帧前定界符不计入帧头长度中。那么,Ethernet帧的最小长度为64B,最大长度为1518B。填充数据字段的代码如下:if(len==1500){…len=0;9}if(len46){for(i=len;i46;i++)fr.data[i]=0x00;}data_len=len;3.CRC校验帧封装的最后一步就是对数据进行校验,并将校验结果记入帧校验字段。CRC编码实际上就是一个循环移位的模二运算。流程描述为:把CRC中的值置为0在原始数据input后添加8个0while(数据未处理完)beginif(crc首位是1)crc=crcXOR100000111把crc中的值左移一位,从input中读取一位新的数据并置于crc的0位crc中的后8位就是经过CRC-8校验的余数。这样,我们只需要看后8位即可,因此上面流程可以简化。构造一个8位的寄存器crc,初始值为0,数据依次移入crc的0位,同时crc的7位移出。当移出的数据为1时,crc才和00000111进行XOR运算;移出数据为0时,不做运算。每次crc中数据位为1时还需要对crc0位进行处理伪代码:while(数据未处理完)beginif(crc的首位是1)crc左移1位crc=crcXOR00000111elsecrc左移1位if(从input中读入的新的数据为1)将crc0位置1end105相关扩展1.比特型运算法定义一个寄存器组,初始化为全1.依照电路图,每输入一个信息位,相当于一个时钟脉冲到来,从高到低依次移位。移位前信息位与bit0相加产生临时位,其中bit15移入临时位,bit10、bit3还要加上临时位。当全部信息位输入完成后,从寄存器组取出它们的值,这就是CRC码。该算法的代码如下:typedefunion{u16val;struct{u16bit0:1;u16bit1:1;…}bits;}CRCREGSCRCRESGSregs;voidcrcInitRegisters(){regs.val=0xffff;}voidcrcInputBit(bitin){bita;a=regs.bits.bit0^in;regs.bits.bit0=regs.bits.bit1;regs.bits.bit1=regs.bits.bit2;regs.bits.bit2=regs.bits.bit3;regs.bits.bit3=regs.bits.bit4^a;regs.bits.bit4=regs.bits.bit5;regs.bits.bit5=regs.bits.bit6;regs.bits.bit6=regs.bits.bit7;regs.bits.bit7=regs.bits.bit8;regs.bits.bit8=regs.bits.bit9;regs.bits.bit9=regs.bits.bit10;regs.bits.bit10=regs.bits.bit11^a;regs.bits.bit11=regs.bits.bit12;regs.bits.bit12=regs.bits.bit13;regs.bits.bit13=regs.bits.bit14;regs.bits.bit14=regs.bits.bit15;regs.bits

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功