蛋白质泛素化研究进展——探索蛋白修饰的秘密泛素是一种含76个氨基酸的多肽,存在于除细菌外的许多不同组织和器官中,具有标记待降解蛋白质的功能。被泛素标记的蛋白质在蛋白酶体中被降解。由泛素控制的蛋白质降解具有重要的生理意义,它不仅能够清除错误的蛋白质,还对细胞周期调控、DNA修复、细胞生长、免疫功能等都有重要的调控作用。2004年,以色列科学家AaronCiechanover、AvramHershko和美国科学家IrwinRose就因发现泛素调节的蛋白质降解而被授予2004年诺贝尔化学奖。正是因为泛素调节的蛋白质降解在生物体中如此重要,因而对它的开创性研究也就具有了特殊意义。目前,在世界各地的很多实验室中,科学家不断发现和研究与这一降解过程相关的细胞新功能。现在,研究人员已发现泛素具有多种非蛋白水解功能,包括参与囊泡转运通路、调控组蛋白修饰以及参与病毒的出芽过程等。鉴于蛋白质降解异常与许多疾病,例如癌症、神经退行性病变以及免疫功能紊乱的发生密切相关,而基因的功能是通过蛋白质的表达实现的,因此,泛素在蛋白质降解中的作用机制如能被阐明将对解释多种疾病的发生机制和遗传信息的调控表达有重要意义。《生命奥秘》本月专题将介绍泛素系统的来源、研究进展,并重点介绍以“泛素-蛋白酶”为靶位的抗癌疗法,希望能给相关领域的研究人员带来崭新的思路。一、泛素样蛋白的来源及功能1.泛素样蛋白及其相关蛋白结构域2.泛素样蛋白连接后的结果3.泛素样蛋白修饰途径的起源4.前景展望二、泛素化途径与人体免疫系统调节1.泛素修饰途径与NF-κB信号通路的关系2.泛素蛋白在天然免疫中的作用3.泛素化修饰途径在获得性免疫机制中的作用4.泛素修饰系统在自身免疫机制中的作用5.研究展望三、针对泛素修饰系统的肿瘤治疗方案1.泛素连接系统是致癌信号通路的重要治疗靶标2.针对泛素连接酶的治疗方法3.E3连接酶与肿瘤血管形成之间的关系4.针对抗凋亡蛋白5.去泛素化酶在肿瘤进展中的作用6.针对肿瘤细胞的蛋白酶体7.非降解途径的泛素化修饰作用与肿瘤发生之间的关系8.干扰泛素蛋白识别过程9.SUMO修饰过程与癌症的关系10.未来还将面临的挑战四、扩展阅读一种新型抗癌药物——NEDD8活化酶抑制剂五、其它1.内体ESCRT装置能分选泛素化修饰的膜蛋白2.内质网的泛素化机制3.DNA修复过程中的泛素以及SUMO修饰机制下一期预告:生物信息学在癌症研究中的应用癌症是一种由遗传和表观遗传改变而引起的疾病。随着各种“组学”技术的进展,癌症的研究正在经历一场革命。后基因组学时代的生物技术进展使分子生物学家得以较为精细地研究DNA(基因组学)、mRNA(转录组学)和蛋白质(蛋白质组学),试图在完整背景下描述癌症的技术革新为研究者获得更多有用的资料,并在新途径下去研究及整合提供了机遇。虽然存在一定的实际困难,但很多的方案正在开发中,目的是整合关于实例的信息、方案和其它不同来源的资料,以鉴定出重要的趋势和方法,最终找到治疗或诊断癌症的新途径。下一期《生命奥秘》将讨论癌症治疗方法的革命,重点放在生物信息学方面,并进一步讨论如何分析各种组学信息,和它们的应用如何改变了癌症的治疗方法。一、泛素样蛋白的来源及功能2010-09-21真核生物蛋白可以通过与各种小分子物质或蛋白质相结合的方式被修饰。在众多的修饰方式当中有一种就是与泛素蛋白或泛素样蛋白(UBL)相结合,采用这种修饰方法可以对多种生理过程进行调控。UBL蛋白可以控制被修饰蛋白与其它生物大分子(比如蛋白酶体或染色质)间的相互作用。各种UBL系统都会使用相应的酶来催化修饰反应,不过这些修饰反应中大部分都是暂时的。有越来越多的证据表明这种UBL修饰途径来自原核生物的硫转移酶系统(sulphurtransferasesystem)及相关酶类。而且,在真核生物的共同祖先中,类似于UBL连接酶和UBL去连接酶的蛋白也是广泛存在的,这些证据都说明UBL修饰系统不是起源于真核生物。真核细胞内的蛋白都会经历各种翻译后修饰,这些修饰过程极大地扩展了蛋白的功能多样性和动力学多样性。蛋白可以通过与磷酸基团、甲基化基团、乙酰基团或某些蛋白质基团(通常这种连接方式都是短暂的)相连接的方式被修饰。而泛素蛋白修饰方式就是上述与蛋白质相连的修饰方式中第一个被发现的。现在,我们已经对这种修饰途径研究得非常透彻了。泛素蛋白是一小分子蛋白,它在真核生物界非常保守,但是在真细菌界(Eubacteria)和古细菌界(Archaea)都不存在。泛素蛋白还可以与上千种不同的蛋白结合。泛素化过程是一个复杂的过程(背景知识框1)。UBL修饰途径也与泛素化修饰途径类似。参与UBL修饰途径的酶虽然各不相同,但在进化上都与参与泛素化途径的酶具有相关性。由于泛素蛋白与UBL蛋白具有相同的三维核心结构——β-抓握折叠(β-graspfold)结构——这说明各种不同的UBL修饰系统都源自一个共同的祖先。背景知识框1:泛素蛋白连接机制泛素蛋白(图中绿色圆圈所示)是由76个氨基酸残基组成的多肽,它可以被一系列的酶促反应活化,进而与底物靶蛋白相连接(如图中箭头所示)。UBL修饰系统采用的也是类似途径。有三种酶——E1、E2和E3——参与了泛素修饰反应,这包括多泛素蛋白合成反应,即在一个泛素蛋白的基础之上再添加好几个泛素蛋白(如图中括号所示)。E1酶负责活化泛素蛋白、E2酶通过转硫醇作用从E1酶处获得泛素蛋白,并将其与底物蛋白相结合,然后E3酶将泛素蛋白与底物连接(在某些情况下会先形成一种硫酯中间产物,然后再与底物结合)。所有真核生物编码的E2和E3同工酶种类非常多,其中E2同工酶有几十种,而E3同工酶则多达数百种。这样,细胞就能对多种蛋白进行各种方式、特异性的修饰和调节,而且这些修饰调控作用也都会受到严密的时空调控。泛素蛋白的C末端通常都经由酰胺键(amidelinkage)与靶蛋白的氨基团连接在一起。最常见的连接是与靶蛋白赖氨酸的ε氨基团相连,不过也可以与靶蛋白的N末端相连。此外,最近还发现泛素蛋白可以与靶蛋白上的半胱氨酸、丝氨酸和苏氨酸相连。在多泛素链中,一个泛素蛋白分子的赖氨酸侧链与另一个泛素蛋白的C末端相连,如此反复形成多泛素链。泛素蛋白含有7个赖氨酸残基,所有这些赖氨酸残基都可以参与上述多泛素链的合成过程。泛素蛋白的C末端含有甘氨酸残基,在泛素蛋白与其它蛋白相连之前,该残基必须被活化。最初,C末端被E1酶腺苷酰化,随后E1酶的半胱氨酸侧链攻击泛素蛋白的C末端,形成E1-泛素蛋白硫酯中间产物。然后被活化的泛素蛋白被“移交”给E2酶活性位点中的半胱氨酸残基,再在E3酶的共同作用下,催化靶蛋白泛素化反应。E3酶在识别靶蛋白底物的过程中起到了关键性作用(不过有些UBL途径不需要E3酶的参与)。在泛素化修饰途径中,还有一些不同的E3酶可以催化泛素蛋白与被单泛素化修饰或多泛素化修饰的靶蛋白相连接。这些E3酶有时也被称为E4酶(尤其是在延伸多泛素侧链时)。去泛素化酶(DUB)可以将靶蛋白上的泛素蛋白水解下来,由于DUB酶的存在,泛素化作用只能是暂时的。这种由泛素蛋白和其它UBL蛋白负责的动态修饰过程构成了一个可逆的“开关”,来控制底物蛋白的不同功能状态,调控细胞内的多种生理活动过程。泛素蛋白于1975年被首次发现。之后的10年间,我们对泛素修饰系统的进化前体分子(evolutionaryprecursors)进行了深入的研究。泛素蛋白被认为是真核生物蛋白中最保守的蛋白之一,但直到最近都还没有很好的、足够灵敏的序列比对方法在细菌蛋白质中发现序列相似的蛋白质。不过,近两年技术方法的快速发展彻底改变了这种情况。首先,序列比对方法变得更为先进了,因而发现了许多泛素蛋白以及泛素修饰系统参与蛋白之间的相似之处,也发现了很多细菌蛋白之间的相似之处;其次,结构测定研究发现,在很多原核蛋白、真核蛋白中都有泛素样折叠结构,不过这些蛋白之间在序列上的相似性很低;第三,在对次级代谢产物和酶辅因子,比如原核生物里的硫胺素(thiamine),即维生素B1等的机理分析中发现了UBL蛋白的激活与连接机制。这些研究进展说明,泛素系统是由各种早就在原核生物里存在的、经历了多样化改变的组成元件和反应体系进化而来的。在泛素修饰过程中存在的多样性非常奇特,修饰的结果取决于泛素蛋白是以单体形式还是多聚体形式与靶蛋白相连接(图1)。各种不同的泛素蛋白间的连接形式决定了被修饰蛋白的命运。当靶蛋白被多泛素化途径修饰之后会与26S蛋白酶体这种多亚基蛋白酶复合物结合,然后被降解,靶蛋白降解后泛素蛋白会被循环利用。细胞利用这种途径降解那些“多余的”蛋白质,以保证细胞周期的正常进行,保证转录调节、蛋白质含量、信号转导甚至昼夜节律等的正确性。泛素化修饰也有非降解作用,比如介导膜蛋白内吞作用和蛋白质胞内运输作用、参与染色质介导的转录调节作用、DNA修复作用以及信号复合体合成等等。泛素化途径与细胞内这么多的功能都有关系,这就不难解释为什么我们会发现越来越多的疾病都与泛素化途径失调有关了。这些疾病包括癌症、Angelman综合征等严重智力障碍疾病,帕金森氏病、阿尔茨海默病和亨廷顿氏病等神经变性性疾病以及II型糖尿病等等。1.泛素样蛋白及其相关蛋白结构域对UBL蛋白及其相关蛋白结构域的研究缘起于上世纪80年代末。当时发现了一种干扰素诱导的、分子量为15KDa的蛋白产物——ISG15。该蛋白在序列上与泛素蛋白有高度的相似性——可以通过共价结合的方式修饰其它蛋白。后来发现ISG15蛋白是表1中所列举的一系列UBL蛋白中第一个被发现的UBL蛋白。尽管如此,直到目前为止我们对它的功能还是知之甚少,至今才发现了ISG15蛋白的E1酶(即ISG15活化酶)和E2酶(即ISG15连接酶)(背景知识框1)。这些酶与ISG15蛋白一样,也都是被I型干扰素诱导表达的。我们用小鼠模型研究发现,蛋白经ISG15蛋白修饰之后,可以表现出抗病毒作用,这也符合ISG15蛋白通过I型干扰素诱导表达的特性。I型干扰素是机体先天免疫系统对病毒作出反应而产生的活性蛋白。与泛素蛋白一样,9种UBL蛋白都是通过共价连接的方式连接到靶生物大分子(大部分是蛋白)上从而对其进行修饰的。表1列出了UBL修饰系统常见的靶蛋白(不过该表并不完整)。泛素系统可以对酵母细胞中超过1000多种的不同蛋白质进行修饰,有一些UBL修饰途径,比如SUMO(小类泛素修饰因子)修饰途径的靶蛋白非常多,而且靶蛋白之间差异非常大。而另一些UBL修饰途径的靶蛋白范围则非常有限,比如UBL蛋白酵母蛋白Atg12似乎只有一个靶蛋白Atg5,Atg8蛋白只与一种特殊的磷脂——磷脂酰乙醇胺(phosphatidylethanolamine)相结合。本表中列举的UBL蛋白都来自酿酒酵母(如果酿酒酵母中有这些蛋白)和脊椎动物(如果酿酒酵母中没有这些蛋白)。如果在酿酒酵母中和脊椎动物中皆存在,则在酿酒酵母UBL蛋白后的括号中显示脊椎动物UBL蛋白。对于E1酶和E2酶,如果酿酒酵母中有这些蛋白则显示酿酒酵母中酶。UBA6蛋白要比Uba1蛋白的种系分布范围窄的多。ND:经由标准的BLAST程序没能发现相似性;NI:没有发现;†表示两个结构域各自的相似度。正如前面提及的那样,大部分的UBL修饰途径使用的酶都是类似的。UBL蛋白连接的主要途径似乎源自一个古老的生物合成途径(我们将会在下文中对该途径进行介绍)。该途径中的酶和蛋白质修饰因子经过了好几轮扩增和多样化改变才变成了今天丰富多彩的UBL修饰途径。不过在几条特殊的UBL修饰途径中还是存在几种例外的UBL连接机制。比如有一种泛素蛋白水解酶,它不仅能够将泛素蛋白从底物蛋白上裂解下来,也能起到完全相反的作用,将泛素蛋白连接到靶蛋白上。还有一些UBL连接酶来自纤毛虫(ciliates)。我们通过序列分析在纤毛虫中发现了一类具有自我剪接功能的多聚蛋白,它们形成了一系列种类各不相同的UBL结构域以及具有自我剪接功能的细菌内蛋白样(BIL)结构域。这些多聚蛋白的编码基因可能起源于一个编码多聚蛋白的基因,然后在进化过程中又获得了编码BI