On the Power of a Singular Set in Binary Additive

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ProeedingsoftheSteklovInstituteofMathematis,Vol.218,1997,pp.23{52.TranslatedfromTrudyMatematiheskogoInstitutaimeniV.A.Steklova,Vol.218,1997,pp.28{57.OriginalRussianTextCopyright1997byArkhipov,Buriev,Chubarikov.EnglishTranslationCopyrightbyMAIKNauka/InterperiodiaPublishing(Russia).OnthePowerofaSingularSetinBinaryAdditiveProblemswithPrimeNumbersG.I.Arkhipov,K.Buriev,andV.N.ChubarikovReeivedFebruary,1997Binaryadditiveproblemswithprimesareproblemsonnetedwiththerepresentationofthepositiveintegersnasthesumn=a(p)+b(q).Herepandqareprimenumbers,anda(x)andb(x)aredenedinteger-valuedfuntionsofanaturalargument.Moreveritisusuallyassumedthatthenumbernissubjetedtoertainnaturaladditionalonditionsofanarithmetialnature.TheproblemoftheinnityoftwinprimesinanaturalseriesandthebinaryGoldbahproblemontherepresentationofanyevennumberasthesumoftwoprimenumbers,whiharenotyetsolved,arelassialexamplesofproblemsofthiskind.Oneoftheimportantaspetsintheinvestigationofabinaryadditiveproblemistheestimationfromaboveofthedensityofitssingular(exeptional)set,i.e.,thesetofnumberswhihdonotadmitthedenedrepresentation.ThesolutionofGoldbah’sternaryproblem,whihwasfoundin1937byVinogradov[1,2℄,allowedsomeauthorstoobtain,atthesametime,therstresultsonerningthepowerofasinglarsetforGoldbah’sbinaryproblem.Lateronmanypapersweredevotedtotheimprovementoftheseestemates.Inpartiular,in1975MontgomeryandVaughan[4℄obtained,forthersttime,aloweringofthepowerintheseestimatesalthoughthenumerialvalueofthisloweringwasnotomputed.AtpresentthebestresultinthisdiretionbelongstoChengJing-runandLiuJianMin[5℄.Theyprovedin1988thatfortheamoutT(x)ofevenpositiveintegersm,whihdonotexeedxandarenotrepresentableasthesumoftwoprimenumbers,asx!+1,theestimateT(x)x11=20wasvalid.InthisartileweestimatethepowersT1(x)andT2(x)ofsingularsetsfortwobinaryadditiveproblemswithprimes[6{8℄.Theresultsthatweobtainedanbeformulatedasthefollowingtwotheorems.Theorem1.Let0beanirrationalnumberandletT1(x)betheamountofnumbersnxwhihannotberepresentedasn=p+[q℄;wherepandqareprimenumbers.Then,asx!1,thefollowingestimatesarevalid:(a)ifthepartialdenominatorsofontinuedfrationsofthenumbersareboundedintheirtotality,thenT1(x)x12=9(lnx)8;(b)ifisanalgebrainumber,thentheestimateT1(x)x12=9+;2324ARKHIPOVetal.where0isarbitrarilysmall,holdstrue.Theonstantunderthesignisineetive.Theorem2.Let1beanoninteger,=1.WedenotebyT2(x)theamoutofpositiveintegersnx,whihannotberepresentedasn=p+[q℄;wherepandqareprimenumbers.Then,forthequantityT2(x)wehavetheestimateT2(x)x12Æ+;whereisarbitrarilysmallandthequantityÆ0isdenedbytheonditionXqye2i[q℄yÆ;theparametersatisfyingtheinequalityy0:81y0:8.Inordertoprovethistheorem,weshallrstonsiderTheorem1.ProofofTheorem1.Wedenotebythesingularsetofthegivenproblem,i.e.,theolletionofpositiveintegersywhihannotberepresentedasy=p+[q℄:NextwedenetheintervalsP=Px,Q=Qx,Y=YxbytheonditionsPx=hx4;3x4i;Qx=hx4;x2i;Yx=h3x4;xi:Theamountofnumbersy2,whihsatisfytheonditiony2Yx,willbedenotedbym=m(x).Lemma1.Leta;bbenumberssubjetedtotheonditions0a1,b0.Thentheestimatem(t)t1alnbt;whihisvalidforalltundertheonditions1tx,yieldstheestimateT1(x)x1alnbx:Proof.Aordingtothedenition,T1(x)isthenumberofy2,satisfyingtheinequalityyx.Next,itisabviousthatforeveryz2[1;x℄thereexistsapositiveintegerkdenedbytheonditionz2x34k;x34k1=Yx(3=4)k1:ThereforewehavetheestimateT1(x)=m(x)+mx34+mx342+x1alnbx1+341a+342(1a)+x1alnbx:PROCEEDINGSOFTHESTEKLOVINSTITUTEOFMATHEMATICSVol.2181997ONTHEPOWEROFASINGULARSETINBINARYADDITIVEPROBLEMS25Wehaveprovedthelemma.ItfollowsfromLemma1thatinordertoproveTheorem1,itsuÆestoobtainorthequantitym(x)essentiallythesameestimatewhihisrequiredforT1(x).Inthisonnetion,weonsidertheDiophantineequationy=p+[q℄undertheonditionthat,asbefore,y2andpandqareprimenumbers.Inthisasewherey2,thenumberofsolutionsofthisequationiszero.Ontheotherhand,weanformallyexpressthisquantityintermsoftrigonometrisums.Weassumethaty2Yx,p2Px,[q℄2Qx.Then,obviously,wehavetherelationJ=1Z0SVWd;whereS=S()=XpPxe2iplnp;V=V()=X[q℄2Pxe2i[q℄lnq;W=W()=Xy2;y2Yxe2iy:Nextweset=x7=9,{=1,E1=[{;{℄,E2=[{;1℄.Then,byvirtueoftheperiodiityofthefuntionSVWwehave0=1Z0SVWd={Z{+1Z{=J1+J2;wherethequantitiesJ1andJ2areobviouslydenedbythelastrelation.ItislearthatjJ1j=jJ2j.TheplanofourfurtherresoningonsistsinanappropriateestimationfrombelowthequantityjJ1joftheformjJ1jmx;andtheestimationfromaboveofthequantutyjJ2joftheformjJ2jm1=2x1=2;wherem=m(x),=x8=9(lnx)4.Itiseasytoseethat,indeed,theseestimatesyieldtherequiredestimateforthequantitym.WeshallrstonsidertheestimatejJ2j.WedenotebyF()thequantityF()=minjS()j;jV()j:Then,obviously,forallwehavejS()V()jF()jS()j+jV()j:ItfollowsthatjJ2j=1{Z{SVWdmax2E2F()1Z0jS()W()jd+1Z0jV()W()jd:PROCEEDINGSOFTHESTEKLOVINSTITUTEOFMATHEMATICSVol.218199726ARKHIPOVetal.Next,usingtheCauhyinequality,weget1Z0jSWjd1Z0jSj2d1Z0jWj2d1=2=Xp2Pxln2pXy2y2Yx1!1=2(mxlnx)1=2:Usingsimilararguments,wederiveanestimateoftheform1Z0jVWjd(m

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功