1§3行列式按一行或一列的展开及行列式的计算1313121211113231222113333123211233322322113122322113312333211232233322113332312322211312113AaAaAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaD)()()(其中是划去所在的行与列后构成的2阶行列式的倍。)3,2,1(1jAjja1j1)1(2上式说明等于它的第一行每个元素与的乘积之和,叫做按第一行展开。这一结论可以推广到n阶行列式,我们定义:3D131211aaa,,131211AAA,,3D3332232211)11(11)1(aaaaaA3331232112)21(12)1(aaaaaA3231222113)31(13)1(aaaaaA3ijM定义4在n阶矩阵中,划去元素所在的第i行与第j列,由余下的元素按原顺序构成的n-1阶行列式叫的余子式(cofactor),记为,且称为的代数余子式(algebraiccofactor)。nijaA)(ijaija111111111111111111111111jjniijijinijiijijinnnjnjnnaaaaaaaaMaaaaaaaa),,2,1,()1(njiMAijjiijija4定理4设,为的代数余子式,(1)行列式等于它的任一行的每个元素与其代数余子式乘积之和,即(2)行列式的任一行的每个元素与另一行对应元素的代数余子式乘积之和为零,即nijaA)(ijA),,2,1,(njiaij),,2,1(1niAaAnjijijkiAanjkjij,015证明:(1)注意于是由行列式定义的推论1,有12111211(,1,2,,1,1,,)1(,,,,,,,)1(,,,,,,)iiniiniiinijjjjjjjjjjjjLLLLLLnjijijnjijjiijjjjjjnjjijijjjjjjnjjiijjjjjjjnjjijijijjjjjjjniiiAaMaaaaaaaaaaaAniiniiniiniiniinii11111111111112111111121111112111211111121)()()()(,,,,,,),,,,,,()()(,,,,,,,),,,,,,,(),,,,,,,(6(2)当时,不妨设,将的第k行换成第i行,其余行不变,则第k行元素的代数余子式不变,行列式的值变为零,由(1)的结论将行列式按照第k行展开,得:kikiA1112111221121220iiiniiinikikinknnnnnnaaaaAaAaAaaaaaaaaaLLLLLLLLLLLLLLLLL第i行第k行7将(1)(2)统一写成公式kikiAAanjkjij,0,1注意:由于行列式的行和列地位对称,行列式也可按列展开:kjkjAAaniikij,0,18例:23221312133133321312122133322322!111333231232221131211)1()1()1(aaaaaaaaaaaaaaaaaaaaaaaa根据矩阵乘法的定义,可得到下面的结果:nnnnnnnnnnnnAAAAAAAAAaaaaaaaaa2122212121112122221112119nnnnnnnnnnnnnnIAEAAAAAaaaaaaaaaAAAAAAAAA00000000000021222211121121222121211110定义5设,为的代数余子式,构造矩阵nijaA)(ijA),,2,1,(njiaijnnnnnnAAAAAAAAAA212221212111*称为A的伴随矩阵(adjointmatrix)。根据前面的结果,下式明显成立:nEAAAAA**11*12213311.216AA例求阶矩阵的伴随矩阵与行列式111213212223313233113131,16,5;16262122121210,10,5;1626212212124,7,5;113131AAAAAAAAA解:各元素的代数余子式112131*122232132333710416107.555AAAAAAAAAA故12.155216271131312121111AaAaAaA注意:行列式按一行或一列展开为我们提供一种计算高阶行列式的方法,通过展开可把高阶行列式转换成低阶行列式,便于计算13例abbabababaD000000000000000列展开按第一110000(1)00000ababaaba5100000(1)0000babbabab55.ab14在实际展开时:(1)常按含“0”元较多的行或列展开(以简化计算)。(2)还可先利用性质将某一行(或列)化为仅含一个非零元再按此行(或列)展开,降为低一阶行列式,如此继续,直到化为三阶或二阶行列式计算。注:15例证明范德蒙(Vandermonde)行列式)()())(())(()(1111122311312111312112232221321nnnnnijjinnnnnnnnxxxxxxxxxxxxxxxxxxxxxxxxxxV证明:用数学归纳法证明。当n=2时,结论成立。假设对n-1阶范德蒙行列式结论成立。下面证对n阶范德蒙行列式也成立。16)()()(0)()()(0011111)(2)(31)(21111121323122211331221131211111312112232221321xxxxxxxxxxxxxxxxxxxxxxxxnxnxxxxxxxxxxxxxxnnnnnnnnnnnnnnn行第行第行第行第行第行第172232232113121213231222113312211312111)())(()()()()()()(nnnnnnnnnnnnnnxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx提出每一列的公共因子n-1阶范德蒙德行列式18上式右端的行列式是n-1阶范得蒙德行列式,由归纳假设,得于是,由归纳法得nijjinnxxxxxxxxV211312)()())((.)(1nijjinxxV19注:对于此类型行列式,可直接用公式计算。222111cbacbaD如:()()().bacacb64169843111D又如:(43)(83)(84)20.20例计算n阶三对角行列式nnbaabbaabbaabbaD111nD解法将按第1行展开,得21111101nnnnnabDDbabaabbaabbaababDbaD)()(21即nnnnnnnnnbbaabababaDDbaDDbaDDbaDD)]([)()()(222122322211同理:当时,可得当时,由(1)得)1(1nnnabDDbababaDnnn11bannnnnnnanaaaDaaaDD)1()(12122思考题阶行列式设nnnDn00103010021321求第一行各元素的代数余子式之和.11211nAAA23思考题解答第一行各元素的代数余子式之和可以表示成nAAA11211n001030100211111.11!2njjn