第二讲,平方差公式专项练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

平方差公式专项练习题一.填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.二、计算题9.利用平方差公式计算:20×21.10.计算:(a+2)(a2+4)(a4+16)(a-2).提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-.学生姓名所在学校所在年级班别出题时间2012-03-5第几单元/课专题训练备课标题平方差与完全平方主要目标1.训练掌握平方差与完全平方的运用。2.深入拓展平方差与完全平方公式。2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:.(2)二变:利用平方差公式计算:.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-a-4b)(a-4b)=16b2-a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+xn)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:1、已知m2+n2-6m+10n+34=0,求m+n的值2、已知,都是有理数,求的值。3.已知求与的值。练一练A组:1.已知求与的值。2.已知求与的值。3、已知求与的值。4、已知(a+b)2=60,(a-b)2=80,求a2+b2及ab的值B组:5.已知,求的值。6.已知,求的值。7.已知,求的值。8、,求(1)(2)9、试说明不论x,y取何值,代数式的值总是正数。C组:10、已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法一、请准确填空1、若a2+b2-2a+2b+2=0,则a2004+b2005=________.2、一个长方形的长为(2a+3b),宽为(2a-3b),则长方形的面积为________.3、5-(a-b)2的最大值是________,当5-(a-b)2取最大值时,a与b的关系是________.4.要使式子0.36x2+y2成为一个完全平方式,则应加上________.5.(4am+1-6am)÷2am-1=________.6.29×31×(302+1)=________.7.已知x2-5x+1=0,则x2+=________.8.已知(2005-a)(2003-a)=1000,请你猜想(2005-a)2+(2003-a)2=________.二、相信你的选择9.若x2-x-m=(x-m)(x+1)且x≠0,则m等于A.-1B.0C.1D.210.(x+q)与(x+)的积不含x的一次项,猜测q应是A.5B.C.-D.-511.下列四个算式:①4x2y4÷xy=xy3;②16a6b4c÷8a3b2=2a2b2c;③9x8y2÷3x3y=3x5y;④(12m3+8m2-4m)÷(-2m)=-6m2+4m+2,其中正确的有A.0个B.1个C.2个D.3个12.设(xm-1yn+2)·(x5my-2)=x5y3,则mn的值为A.1B.-1C.3D.-313.计算[(a2-b2)(a2+b2)]2等于A.a4-2a2b2+b4B.a6+2a4b4+b6C.a6-2a4b4+b6D.a8-2a4b4+b814.已知(a+b)2=11,ab=2,则(a-b)2的值是A.11B.3C.5D.1915.若x2-7xy+M是一个完全平方式,那么M是A.y2B.y2C.y2D.49y216.若x,y互为不等于0的相反数,n为正整数,你认为正确的是A.xn、yn一定是互为相反数B.()n、()n一定是互为相反数C.x2n、y2n一定是互为相反数D.x2n-1、-y2n-1一定相等三、考查你的基本功17.计算(1)(a-2b+3c)2-(a+2b-3c)2;(2)[ab(3-b)-2a(b-b2)](-3a2b3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x+2y)(x-2y)+4(x-y)2-6x]÷6x.18.(6分)解方程x(9x-5)-(3x-1)(3x+1)=5.四、生活中的数学19.(6分)如果运载人造星球的火箭的速度超过11.2km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机的速度为1.8×106m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-的值.“整体思想”在整式运算中的运用“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考:1、当代数式的值为7时,求代数式的值.2、已知,,,求:代数式的值。3、已知,,求代数式的值4、已知时,代数式,求当时,代数式的值5、若,试比较M与N的大小6、已知,求的值.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功