minz=cXbAXts..1、模型:命令:x=linprog(c,A,b)2、模型:minz=cXbAXts..beqXAeq命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:存在,则令A=[],b=[].bAXMATLAB优化工具箱解数学规划(一)线性规划3、模型:minz=cXbAXts..beqXAeqVLB≤X≤VUB命令:[1]x=linprog(c,A,b,Aeq,beq,VLB,VUB)[2]x=linprog(c,A,b,Aeq,beq,VLB,VUB,X0)注意:[1]若没有等式约束:,则令Aeq=[],beq=[].[2]其中X0表示初始点beqXAeq4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval。解编写M文件exam1.m如下:c=[-0.4-0.28-0.32-0.72-0.64-0.6];A=[0.010.010.010.030.030.03;0.02000.0500;00.02000.050;000.03000.08];b=[850;700;100;900];Aeq=[];beq=[];vlb=[0;0;0;0;0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例1max6543216.064.072.032.028.04.0xxxxxxz85003.003.003.001.001.001.0..654321xxxxxxts70005.002.041xx10005.002.052xx90008.003.063xx6,2,10jxj例2321436minxxxz120..321xxxts301x5002x203x解:编写M文件exam2.m如下:c=[634];A=[010];b=[50];Aeq=[111];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)321)436(minxxxz32120030xxx50120010111..321xxxts用MATLAB软件求解,其输入格式如下:1.x=quadprog(H,C,A,b);2.x=quadprog(H,C,A,b,Aeq,beq);3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0);5.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);6.[x,fval]=quaprog(...);7.[x,fval,exitflag]=quaprog(...);8.[x,fval,exitflag,output]=quaprog(...);标准型为:MinZ=21XTHX+cTXs.t.AX=bbeqXAeqVLB≤X≤VUB(二)二次规划例3minf(x1,x2)=-2x1-6x2+x12-2x1x2+2x22s.t.x1+x2≤2-x1+2x2≤2x1≥0,x2≥01、写成标准形式:2、输入命令:(exam3)H=[1-1;-12];c=[-2;-6];A=[11;-12];b=[2;2];Aeq=[];beq=[];VLB=[0;0];VUB=[];[x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)3、运算结果为:x=0.66671.3333z=-8.222221212162211-1),(minxxxxxxzT212100222111xxxxs.t.1.首先建立M文件fun.m,定义目标函数F(X):functionf=fun(X);f=F(X);其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:2.若约束条件中有非线性约束:G(X)0或Ceq(X)=0,则建立M文件nonlcon.m定义函数G(X)与Ceq(X):function[G,Ceq]=nonlcon(X)G=...Ceq=...(三)一般非线性规划标准型为:minF(X)s.tAX=bbeqXAeqG(X)0Ceq(X)=0VLBXVUB3.建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:(1)x=fmincon(‘fun’,X0,A,b)(2)x=fmincon(‘fun’,X0,A,b,Aeq,beq)(3)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB)(4)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’)(5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)(6)[x,fval]=fmincon(...)(7)[x,fval,exitflag]=fmincon(...)(8)[x,fval,exitflag,output]=fmincon(...)输出极值点M文件迭代的初值参数说明变量上下限注意:[1]fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为’on’),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。[2]fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。[3]fmincon函数可能会给出局部最优解,这与初值X0的选取有关。1.先建立M文件fun4.m,定义目标函数:functionf=fun4(x);f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);)12424()(22122211xxxxxexfxx1+x2=0s.t.1.5+x1x2-x1-x20-x1x2–100例42.再建立M文件mycon4.m定义非线性约束:function[g,ceq]=mycon4(x)g=[x(1)+x(2);1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10];3.主程序exam4.m为:x0=[-1;1];A=[];b=[];Aeq=[11];beq=[0];vlb=[];vub=[];[x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon4')4.运算结果为:x=-1.22501.2250fval=1.8951100,5007025..2min21222122221121xxxxXgxxXgtsxxXf1.先建立M-文件fun5.m定义目标函数:functionf=fun5(x);f=-2*x(1)-x(2);2.再建立M文件mycon5.m定义非线性约束:function[g,ceq]=mycon5(x)g=[x(1)^2+x(2)^2-25;x(1)^2-x(2)^2-7];例53.主程序exam5.m为:x0=[3;2.5];VLB=[00];VUB=[510];[x,fval,exitflag,output]=fmincon('fun5',x0,[],[],[],[],VLB,VUB,'mycon5')4.运算结果为:x=4.00003.0000fval=-11.0000exitflag=1output=iterations:4funcCount:17stepsize:1algorithm:[1x44char]firstorderopt:[]cgiterations:[]案例1:供应与选址某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表示,距离单位:千米)及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从料场到工地之间均有直线道路相连。(1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。(2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?工地位置(a,b)及水泥日用量d123456a1.258.750.55.7537.25b1.250.754.7556.57.25d3547611(一)建立模型记工地的位置为(ai,bi),水泥日用量为di,i=1,…,6;料场位置为(xj,yj),日储量为ej,j=1,2;从料场j向工地i的运送量为Xij。目标函数为:216122)()(minjiijijijbyaxXf约束条件为:2,1,6,,2,1,6121jeXidXjiijijij当用临时料场时决策变量为:Xij,当不用临时料场时决策变量为:Xij,xj,yj。(二)使用临时料场的情形使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题.线性规划模型为:2161),(minjiijXjiaaf2,1,6,,2,1,s.t.6121jeXidXjiijijij其中22)()(),(ijijbyaxjiaa,i=1,2,…,6,j=1,2,为常数。设X11=X1,X21=X2,,X31=X3,X41=X4,X51=X5,,X61=X6X12=X7,X22=X8,,X32=X9,X42=X10,X52=X11,,X62=X12利用Matlab计算结果为:x=[3.00005.00000.00007.00000.00001.00000.00000.00004.00000.00006.000010.0000]’fval=136.2275即由料场A、B向6个工地运料方案为:123456料场A350701料场B0040610总的吨千米数为136.2275。(三)改建两个新料场的情形改建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij,在同样条件下使总吨千米数最小。这是非线性规划问题。非线性规划模型为:216122)()(minjiijijijbyaxXf2,1,6,,2,1,..6121jeXidXtsjiijijij设X11=X1,X21=X2,,X31=X3,X41=X4,X51=X5,,X61=X6X12=X7,X22=X8,,X32=X9,X42=X10,X52=X11,,X62=X12x1=X13,y1=X14,x2=X15,y2=X16利用Matlab计算结果为:x=[3.00005.00004.00007.00001.0000000005.000011.00005.69594.92857.25007.7500]’fval=89.8835exitflag=1返回供应中心1(5.69594.9285)供应中心2(7.25007.7500)