12全等三角形集体备课

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

本章的地位和作用学生已学过线段、角、相交线、平行线以及三角形的有关知识,七年级两册教科书中安排了一些说理的内容,这些为学习全等三角形的有关内容作好了准备。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础。全等三角形是研究图形的重要工具,学生只有掌握好全等三角形的内容,并且能灵活地运用它们,才能学好后面的四边形、圆等内容。从本章开始,要使学生理解证明的基本过程,掌握用综合法证明的格式。这既是本章的重点,也是教学的难点。本章教学时间约须11课时12.1全等三角形1课时12.2三角形全等的判定6课时其中三角形全等的判定(一)1课时三角形全等的判定(二)1课时三角形全等的判定(三)1课时直角三角形全等的判定1课时三角形全等的判定(选择方法)1课时+112.3角的平分线的性质2课时,其中角的平分线的性质1课时角的平分线的判定1课时数学活动、小结2课时机动1课时学习目标(1)理解全等三角形的概念,能识别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质。(2)经历探索三角形全等条件的过程,掌握判定三角形全等的基本事实(“边边边”“边角边”和“角边角”)和定理(“角角边”),能判定两个三角形全等。(3)能利用三角形全等证明一些结论。(4)探索并证明角平分线的性质定理,能运用角的平分线的性质。本章知识结构框图:全等三角形全等形定义对应边相等,对应角相等解决问题SSS,SAS,ASA,AAS,HL判定性质应用考点分析:全等三角形是初中几何的重要内容,也是数学中最基础的知识,是研究平面几何的重要工具。近几年的中考数学试题中,经常将全等与其他知识结合在一起,考查学生综合运用数学知识解决问题的能力,形式多种多样。认知难点和突破方法1.寻找对应元素的规律(1)有公共边的,公共边是对应边;(2)有公共角的,公共角是对应角;(3)有对顶角的,对顶角是对应角;(4)两个全等三角形最大的边是对应边,最小的边也是对应边;(5)两个全等三角形最大的角是对应角,最小的角也是对应角;ABCDABCDE2、让学生深刻体会动态几何研究:一个三角形经过平移、翻折、旋转,前后的图形全等。常见的图形有:AFEDCB平移翻折旋转ABCDEO3.注意:两个三角形全等在表示时通常把对应顶点的字母写在对应的位置上。ACBFED能否记作∆ABC≌∆DEF?应该记作∆ABC≌∆DFE原因:A与D、B与F、C与E对应。教法建议1.多用多媒体教学,直观形象。2.多让学生自己动手拼图实践,就会对相关结论印象深刻。建议3.本节先通过形状、大小相同的图形引出全等形,进而引出全等三角形及其对应元素这些核心概念,然后直观演示图形的平移、翻折、旋转,从中体会图形变换的思想,逐步培养学生动态研究几何的意识,进而理解本节课的重点全等三角形的性质;4.向学生介绍全等符号,全等符号“≌”,中“∽”表示符号相同(即相似),“=”表示大小相等,合起来就是形状相同,大小相等,也就是全等。ABCDEF如图:∵△ABC≌△DEF5.全等三角形的性质:全等三角形的对应边相等,对应角相等∴AB=DE,AC=DF,BC=EF∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等)(全等三角形的对应角相等)以3cm,5cm为三角形的两边,长度为5cm的边所对的角为40°,情况又怎样?动手画一画,你发现了什么?ABCDEF40°40°结论:两边及其一边所对的角相等,两个三角形不一定全等直接应用角平分线的性质,而不利用全等证明。注意向学生说明“同理”的意思(补充)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF求证:CF=EB分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF≌Rt△EDB.现已有一个条件BD=DF(斜边相等),还需要我们找什么条件DC=DE(因为角的平分线的性质)再用HL证明.ACDEBF全等三角形典型题型1.能灵活运用全等三角形的有关知识,证明边角相等;2.解决实际问题3.三角形全等的判定方法有:定义、SSS定理、SAS定理、ASA定理、AAS推论,在直角三角形中还可以用HL定理。但要注意不能用边边角或角角角判定三角形全等.证明线段或角相等,通常是通过证明三角形全等来实现的,因此要学会分析,善于总结规律,灵活地选择适当方法证明两个三角形全等,当题目的图中无现成的可用来证明的全等三角形时,就需要根据条件和结论添加适当的辅助线,构造全等三角形,有一些复杂的几何题,往往要证明几次全等才能得到结果,选择好的证明方法是非常重要的.知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:SASSSSHLAASSASASAAASASAAAS找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。例1.如图,,,,AFEB四点共线,ACCE,BDDF,AEBF,ACBD。求证:ACFBDE。思路分析:从结论ACFBDE入手,全等条件只有ACBD;由AEBF两边同时减去EF得到AFBE,又得到一个全等条件。还缺少一个全等条件,可以是CFDE,也可以是AB。由条件ACCE,BDDF可得90ACEBDF,再加上AEBF,ACBD,可以证明ACEBDF,从而得到AB。知识点二:构造全等三角形例2.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C。思路分析:直接证明21C比较困难,我们可以间接证明,即找到,证明2且1C。也可以看成将2“转移”到。那么在哪里呢?角的对称性提示我们将AD延长交BC于F,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C。解答过程:延长AD交BC于F在ABD与FBD中90ABDFBDBDBDADBFDBABDFBD(ASA)2DFB又1DFBC21C。解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。知识点二:构造全等三角形例2.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C。思路分析:直接证明21C比较困难,我们可以间接证明,即找到,证明2且1C。也可以看成将2“转移”到。那么在哪里呢?角的对称性提示我们将AD延长交BC于F,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C。解答过程:延长AD交BC于F在ABD与FBD中90ABDFBDBDBDADBFDBABDFBD(ASA)2DFB又1DFBC21C。解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。知识点二:构造全等三角形例2.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C。思路分析:直接证明21C比较困难,我们可以间接证明,即找到,证明2且1C。也可以看成将2“转移”到。那么在哪里呢?角的对称性提示我们将AD延长交BC于F,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C。解答过程:延长AD交BC于F在ABD与FBD中90ABDFBDBDBDADBFDBABDFBD(ASA)2DFB又1DFBC21C。解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。知识点二:构造全等三角形例2.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C。思路分析:直接证明21C比较困难,我们可以间接证明,即找到,证明2且1C。也可以看成将2“转移”到。那么在哪里呢?角的对称性提示我们将AD延长交BC于F,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C。解答过程:延长AD交BC于F在ABD与FBD中90ABDFBDBDBDADBFDBABDFBD(ASA)2DFB又1DFBC21C。解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。知识点二:构造全等三角形例2.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C。思路分析:直接证明21C比较困难,我们可以间接证明,即找到,证明2且1C。也可以看成将2“转移”到。那么在哪里呢?角的对称性提示我们将AD延长交BC于F,则构造了△FBD,可以通过证明三角形全等来证明∠2=∠DFB,可以由三角形外角定理得∠DFB=∠1+∠C。解答过程:延长AD交BC于F在ABD与FBD中90ABDFBDBDBDADBFDBABDFBD(ASA)2DFB又1DFBC21C。解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。例3.如图,在ABC中,ABBC,90ABC。F为AB延长线上一点,点E在BC上,BEBF,连接,AEEF和CF。求证:AECF。思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。以线段AE为边的ABE绕点B顺时针旋转90到CBF的位置,而线段CF正好是CBF的边,故只要证明它们全等即可。解答过程:90ABC,F为AB延长线上一点90ABCCBF在ABE与CBF中ABBCABCCBFBEBFABECBF(SAS)AECF。解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。知识点三:常见辅助线的作法1.连接四边形的对角线例4.如图,AB//CD,AD//BC,求证:ABCD。思路分析:关于四边形我们知之甚少,通过连接四边形的对角线,可以把原问题转化为全等三角形的问题。解答过程:连接ACAB//CD,AD//BC12,34在ABC与CDA中1243ACCAABCCDA(ASA)ABCD。解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。2.作垂线,利用角平分线的知识例5.如图,,APCP分别是ABC外角MAC和NCA的平分线,它们交于点P。求证:BP为MBN的平分线。思路分析:要证明“BP为MBN的平分线”,可以利用点P到,BMBN的距离相等来证明,故应过点P向,BMBN作垂线;另一方面,为了利用已知条件“,APCP分别是MAC和NCA的平分线”,也需要作出点P到两外角两边的距离。解答过程:过P作PDBM于D,PEAC于E,PFBN于FAP平分MAC,PDB

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功