1.1.1-1.1.2命题与四种命题高二数学选修2-1第一章常用逻辑用语歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“狭路相逢”,批评家遇到歌德走来,大声说道:“我从来不给傻子让路!”但歌德,谦恭的闪在一旁,礼貌回答道“呵呵,我可恰恰相反,”。逻辑指的是思维的规律和规则,是对思维过程的抽象;你能分析此故事中歌德与批评家的言行语句吗?常用逻辑用语“数学是思维的科学”逻辑是研究思维形式和规律的科学.逻辑用语是我们必不可少的工具.通过学习和使用常用逻辑用语,掌握常用逻辑用语的用法,,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简捷性.命题及其关系1.1.1命题思考下列语句的表述形式有什么特点?你能判断它们的真假吗?(1)125;(2)3是12的约数;(3)0.5是整数;(4)对顶角相等;(5)3能被2整除;(6)若x2=1,则x=1.语句都是陈述句,并且可以判断真假。命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。判断为真的语句叫做真命题。判断为假的语句叫做假命题。(1)125;(2)3是12的约数;(3)0.5是整数;(4)对顶角相等;(5)3能被2整除;(6)若x2=1,则x=1.用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。如何判断一个语句是不是命题?1)7是23的约数吗?2)X5.3)-2a3.4)画线段AB=CD.开语句判断一个语句是不是命题,关键看这语句是否符合“是陈述句”和“可以判断真假”这两个条件。有些语句中含有变量,在不给定变量的值之前,我们无法确定这语句的真假,这样的语句叫开语句,以后会专门研究。疑问句祈使句1)今天天气如何?2)你是不是作业没交?3)这里景色多美啊!4)-2不是整数。5)43。6)x4。看看下列语句是不是命题?不是(疑问句)不是(疑问句)不是(感叹句)是(否定陈述句)是(肯定陈述句)不是(开语句)“若p则q”形式的命题命题“若整数a是素数,则a是奇数。”具有“若p则q”的形式。qp通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论。“若p则q”形式的命题是命题的一种形式而不是唯一的形式,也可写成“如果p,那么q”“只要p,就有q”等形式。“若p则q”形式的命题的优点是条件与结论容易辨别,缺点是太格式化且不灵活.“若p则q”形式的命题的书写命题:“垂直于同一条直线的两个平面平行”。条件和结论各是什么?对于一些条件与结论不明显的命题,一般采取先添补一些命题中省略的词句,确定条件与结论。写成“若p则q”的形式为:若两个平面垂直于同一条直线,则这两个平面平行。例2指出下列命题中的条件p和结论q:1)若整数a能被2整除,则a是偶数;2)菱形的对角线互相垂直且平分。解:1)条件p:整数a能被2整除,结论q:整数a是偶数。2)写成若p,则q的形式:若四边形是菱形,则它的对角线互相垂直且平分。条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分。例3把下列命题改写成“若p则q”的形式,并判定真假。(1)负数的平方是正数.(2)偶函数的图像关于y轴对称.(3)垂直于同一条直线的两条直线平行(4)面积相等的两个三角形全等.(5)对顶角相等.真命题真命题假命题假命题真命题练习1、将命题“a0时,函数y=ax+b的值随x值的增加而增加”改写成“若p则q”的形式,并判断命题的真假。解答:a0时,若x增加,则函数y=ax+b的值也随之增加,它是真命题.在本题中,a0是大前提,应单独给出,不能把大前提也放在命题的条件部分内.2、把下列命题改写成“若p,则q”的形式,并判断它们的真假.(1)等腰三角形两腰的中线相等;(2)偶函数的图象关于y轴对称;(3)垂直于同一个平面的两个平面平行。(1)若三角形是等腰三角形,则三角形两边上的中线相等。这是真命题。(2)若函数是偶函数,则函数的图象关于y轴对称,这是真命题。(3)若两个平面垂直于同一平面,则这两个平面互相平行。这是假命题。命题及其关系1.1.2四种命题下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?1.若f(x)是正弦函数,则f(x)是周期函数;2.若f(x)是周期函数,则f(x)是正弦函数;3.若f(x)不是正弦函数,则f(x)不是周期函数;4.若f(x)不是周期函数,则f(x)不是正弦函数。观察命题(1)与命题(2)的条件和结论之间分别有什么关系?1.若f(x)是正弦函数,则f(x)是周期函数;2.若f(x)是周期函数,则f(x)是正弦函数;互逆命题:一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题叫做互逆命题。原命题:其中一个命题叫做原命题。逆命题:另一个命题叫做原命题的逆命题。pqqp即原命题:若p,则q逆命题:若q,则p观察命题(1)与命题(3)的条件和结论之间分别有什么关系?1.若f(x)是正弦函数,则f(x)是周期函数;3.若f(x)不是正弦函数,则f(x)不是周期函数.pq┐p原命题:若p,则q┐q为书写简便,常把条件p的否定和结论q的否定分别记作“┐p”“┐q”否命题:若┐p,则┐q互否命题原命题(原命题的)否命题观察命题(1)与命题(4)的条件和结论之间分别有什么关系?1.若f(x)是正弦函数,则f(x)是周期函数;4.若f(x)不是周期函数,则f(x)不是正弦函数.pq┐q原命题:若p,则q┐p逆否命题:若┐q,则┐p互为逆否命题原命题(原命题的)逆否命题原命题,逆命题,否命题,逆否命题四种命题形式:原命题:逆命题:否命题:逆否命题:若p,则q若q,则p若┐p,则┐q若┐q,则┐p写出下列命题的逆命题、否命题、逆否命题,并分别判断它们的真假:(1)0,0.aab若则0,0.aba逆命题:若则0,0.aab否命题:若则0,0.aba逆否命题:若则(真)(假)(假)(真)写出下列命题的逆命题、否命题、逆否命题,并分别判断它们的真假:2(2)1,11.xx若则211,1.xx逆命题:若则21,11.xxx否命题:若则或211,1.xxx逆否命题:若或则(真)(真)(真)(真)写出下列命题的逆命题、否命题、逆否命题,并分别判断它们的真假:2(3)1,1.xx若则21,1.xx逆命题:若则21,1.xx否命题:若则21,1.xx逆否命题:若则(真)(真)(假)(假)写出下列命题的逆命题、否命题、逆否命题,并分别判断它们的真假:22(4),.abab若则22,.abab逆命题:若则22,.abab否命题:若则22,.abab逆否命题:若则(假)(假)(假)(假)原命题、逆命题、否命题、逆否命题的真假关系:原命题逆命题否命题逆否命题(1)真假假真(2)真真真真(3)假真真假(4)假假假假注:原命题与逆否命题真假性相同逆命题与否命题真假性相同二、四种命题之间的关系及真假性判断1.四种命题之间的关系:2.四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有的真假性.(2)两个命题若为互逆命题或互否命题,则它们的真假性.相同没有关系若p,则q若┐p,则┐q若q,则p若┐q,则┐p原命题、逆命题、否命题、逆否命题中真命题的个数有几个?判断正误,并说明理由:(1)若原命题是“对顶角相等”,它的否命题是“对顶角不相等”。(2)若原命题是“对顶角相等”,它的否命题是“不成对顶关系的两个角不相等”。例设原命题是“当c0时,若ab,则acbc”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假:解:逆命题:当c0时,若acbc,则ab.逆命题为真.否命题:当c0时,若a≤b,则ac≤bc.否命题为真.逆否命题:当c0时,若ac≤bc,则a≤b.逆否命题为真.写出下列命题的逆命题、否命题、逆否命题,并分别判断它们的真假:0,00.abab若则或00,0.abab逆命题:若或则0,00.abab否命题:若则且00,0.abab逆否命题:若且则(真)(真)(真)(真)原结论反设词原结论反设词是至少有一个都是至多有一个大于至少有n个小于至多有n个对所有x,成立对任何x,不成立准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式.不是不都是不大于大于或等于一个也没有至少有两个至多有(n-1)个至少有(n+1)个存在某x,不成立存在某x,成立312xyxy判断命题“若+,则或”的真假。=1=2=3.xyxy逆否命题为:若且,则+