1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线时叫仰角,目标视线在水平视线时叫俯角.(如图(a)).第八节解三角形的综合应用图(a)图(b)上方下方2.方位角从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图(b)).3.方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度.1.如图,设A,B两点在河的两岸,一测量者在A的同侧,选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为______m.答案:502[小题体验]2.(教材习题改编)海面上有A,B,C三个灯塔,AB=10nmile,从A望C和B成60°视角,从B望C和A成75°视角,则BC=________nmile.答案:56易混淆方位角与方向角概念:方位角是指北方向线与目标方向线按顺时针之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.1.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC=________.[小题纠偏]答案:130°2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的________.解析:如图所示,∠ACB=90°,又AC=BC,所以∠CBA=45°,而β=30°,所以α=90°-45°-30°=15°.所以点A在点B的北偏西15°.答案:北偏西15°考点一测量高度问题[典例引领]如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600m,故由正弦定理得600sin45°=BCsin30°,解得BC=3002(m).在Rt△BCD中,CD=BC·tan30°=3002×33=1006(m).答案:1006[由题悟法]求解高度问题应注意的3个问题(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.[即时应用](2016·启东中学检测)如图,为了估测某塔的高度,在同一水平面的A,B两点处进行测量,在点A处测得塔顶C在西偏北20°的方向上,仰角为60°;在点B处测得塔顶C在东偏北40°的方向上,仰角为30°.若A,B两点相距130m,求塔的高度CD.解:分析题意可知,设CD=h,则AD=h3,BD=3h,在△ADB中,∠ADB=180°-20°-40°=120°,所以由余弦定理AB2=BD2+AD2-2BD·AD·cos120°,可得1302=3h2+h23-2·3h·h3·-12,解得h=1039,故塔的高度为1039(m).考点二测量距离问题研究测量距离问题,解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.常见的命题角度有:(1)两点都不可到达;(2)两点不相通的距离;(3)两点间可视但有一点不可到达.[锁定考向][题点全练]角度一:两点都不可到达1.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________km.解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=DC=32(km).在△BCD中,∠DBC=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin45°·sin30°=64.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos45°=34+38-2×32×64×22=38.所以AB=64(km).所以A,B两点间的距离为64km.答案:64角度二:两点不相通的距离2.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2abcosα.若测得CA=400m,CB=600m,∠ACB=60°,则A,B两点的距离为________m.解析:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BCcos∠ACB,所以AB2=4002+6002-2×400×600cos60°=280000.所以AB=2007(m).即A,B两点间的距离为2007m.答案:2007角度三:两点间可视但有一点不可到达3.如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出A,B的距离,其方法在A所在的岸边选定一点C,可以测出A,C的距离m,再借助仪器,测出∠ACB=α,∠CAB=β,在△ABC中,运用正弦定理就可以求出AB.若测出AC=60m,∠BAC=75°,∠BCA=45°,则A,B两点间的距离为________m.解析:∠ABC=180°-75°-45°=60°,所以由正弦定理得,ABsinC=ACsinB,所以AB=AC·sinCsinB=60×sin45°sin60°=206(m).即A,B两点间的距离为206m.答案:206[通法在握]求距离问题的2个注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.[演练冲关]1.已知A,B两地间的距离为10km,B,C两地间的距离为20km,现测得∠ABC=120°,则A,C两地间的距离为________km.解析:由余弦定理可得:AC2=AB2+CB2-2AB×CB×cos120°=102+202-2×10×20×-12=700.所以AC=107(km).答案:1072.(2017·常州调研)一艘船以每小时15km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4h后,船到达B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析:如图所示,依题意有AB=15×4=60,∠DAC=60°,∠CBM=15°,所以∠MAB=30°,∠AMB=45°.在△AMB中,由正弦定理,得60sin45°=BMsin30°,解得BM=302.答案:302考点三测量角度问题[典例引领]在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12nmile的水面上,有蓝方一艘小艇正以每小时10nmile的速度沿南偏东75°方向前进,若红方侦察艇以每小时14nmile的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x小时后在C处追上蓝方的小艇,则AC=14x,BC=10x,∠ABC=120°.根据余弦定理得(14x)2=122+(10x)2-240xcos120°,解得x=2.故AC=28,BC=20.根据正弦定理得BCsinα=ACsin120°,解得sinα=20sin120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.[由题悟法]解决测量角度问题的3个注意事项(1)测量角度时,首先应明确方位角及方向角的含义.(2)求角的大小时,先在三角形中求出其正弦或余弦值.(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.[即时应用]如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cosθ的值.解:在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理得,BC2=AB2+AC2-2AB·AC·cos120°=2800,解得BC=207.由正弦定理,得ABsin∠ACB=BCsin∠BAC⇒sin∠ACB=ABBC·sin∠BAC=217.由∠BAC=120°,知∠ACB为锐角,则cos∠ACB=277.由θ=∠ACB+30°,得cosθ=cos(∠ACB+30°)=cos∠ACBcos30°-sin∠ACBsin30°=2114.板块命题点专练(六)点击此处